5 resultados para Bottles
em CentAUR: Central Archive University of Reading - UK
Resumo:
A study was conducted to estimate variation among laboratories and between manual and automated techniques of measuring pressure on the resulting gas production profiles (GPP). Eight feeds (molassed sugarbeet feed, grass silage, maize silage, soyabean hulls, maize gluten feed, whole crop wheat silage, wheat, glucose) were milled to pass a I mm screen and sent to three laboratories (ADAS Nutritional Sciences Research Unit, UK; Institute of Grassland and Environmental Research (IGER), UK; Wageningen University, The Netherlands). Each laboratory measured GPP over 144 h using standardised procedures with manual pressure transducers (MPT) and automated pressure systems (APS). The APS at ADAS used a pressure transducer and bottles in a shaking water bath, while the APS at Wageningen and IGER used a pressure sensor and bottles held in a stationary rack. Apparent dry matter degradability (ADDM) was estimated at the end of the incubation. GPP were fitted to a modified Michaelis-Menten model assuming a single phase of gas production, and GPP were described in terms of the asymptotic volume of gas produced (A), the time to half A (B), the time of maximum gas production rate (t(RM) (gas)) and maximum gas production rate (R-M (gas)). There were effects (P<0.001) of substrate on all parameters. However, MPT produced more (P<0.001) gas, but with longer (P<0.001) B and t(RM gas) (P<0.05) and lower (P<0.001) R-M gas compared to APS. There was no difference between apparatus in ADDM estimates. Interactions occurred between substrate and apparatus, substrate and laboratory, and laboratory and apparatus. However, when mean values for MPT were regressed from the individual laboratories, relationships were good (i.e., adjusted R-2 = 0.827 or higher). Good relationships were also observed with APS, although they were weaker than for MPT (i.e., adjusted R-2 = 0.723 or higher). The relationships between mean MPT and mean APS data were also good (i.e., adjusted R 2 = 0. 844 or higher). Data suggest that, although laboratory and method of measuring pressure are sources of variation in GPP estimation, it should be possible using appropriate mathematical models to standardise data among laboratories so that data from one laboratory could be extrapolated to others. This would allow development of a database of GPP data from many diverse feeds. (c) 2005 Published by Elsevier B.V.
Resumo:
Cloudy apple juice has been found to develop off-flavors during storage in daylight. The development of off-flavors and volatile compounds was monitored in reconstituted juice prepared from 'Golden Delicious' and 'Fuji' apple concentrates stored in glass bottles under fluorescent light (3000 Ix, 8 degrees C). A strong metallic off-flavor was formed by photooxidation. A major contributor to the off-flavor was identified as 1-octen-3-one by gas chromatography-olfactometry. In addition, six volatile compounds, pentanal, 2-methyl-1-penten-3-one, hexanal, (E)-2-heptenal, 6-methyl-5-hepten-2-one, and (E)-2octenal, increased significantly after light exposure and could contribute to the off-flavor. Except for pentanal and hexanal, these volatiles were found only after light exposure. Higher levels of volatiles were observed in juice from 'Golden Delicious' apples than in juice from 'Fuji' apples, and this difference was consistent with higher levels of suspended solids. When the suspended solids were removed by centrifugation, the development of volatiles on exposure to light was reduced significantly.
Resumo:
An in vitro study was conducted to investigate the effect of tannins on the extent and rate of gas and methane production, using an automated pressure evaluation system (APES). In this study three condensed tannins (CT; quebracho, grape seed and green tea tannins) and four hydrolysable tannins (HT; tara, valonea, myrabolan and chestnut tannins) were evaluated, with lucerne as a control substrate. CT and HT were characterised by matrix assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF-MS). Tannins were added to the substrate at an effective concentration of 100 g/kg either with or without polyethylene glycol (PEG6000), and incubated for 72 h in pooled, buffered rumen liquid from four lactating dairy cows. After inoculation, fermentation bottles were immediately connected to the APES to measure total cumulative gas production (GP). During the incubation, 11 gas samples were collected from each bottle at 0, 1, 4, 7, 11, 15, 23, 30, 46, 52 and 72 h of incubation and analysed for methane. A modified Michaelis-Menten model was fitted to the methane concentration patterns and model estimates were used to calculate the total cumulative methane production (GPCH4). GP and GPCH4 curves were fitted using a modified monophasic Michaelis-Menten model. Addition of quebracho reduced GP (P=0.002), whilst the other tannins did not affect GP. Addition of PEG increased GP for quebracho (P=0.003), valonea (P=0.058) and grape seed tannins (P=0.071), suggesting that these tannins either inhibited or tended to inhibit fermentation. Addition of quebracho and grape seed tannins also reduced (P≤0.012) the maximum rate of gas production, indicating that microbial activity was affected. Quebracho, valonea, myrabolan and grape seed decreased (P≤0.003) GPCH4 and the maximum rate (0.001≤ P≤ 0.102) of CH4 production. Addition of chestnut, green tea and tara tannins did not affect total gas nor methane production. Valonea and myrabolan tannins have most promise for reducing methane production as they had only a minor impact on gas production.
Resumo:
Some bioactive secondary metabolites in forage legumes can cause digestive interactions, so that the rumen fermentation pattern of a mixture of forages can differ from the average values of its components. The objective of this study was to investigate the potential role of condensed tannins (CT) on the synergistic effects between one grass species, cocksfoot, and one CT-containing legume species, sainfoin, on in vitro rumen fermentation characteristics. Cocksfoot and sainfoin in different proportions (in g/kg, 1000:0, 750:250, 500:500, 250:750 and 0:1000) were incubated under anaerobic conditions in culture bottles containing buffered rumen fluid from sheep. Incubations were carried out using artificial saliva with and without polyethylene glycol (PEG), which binds and thus inactivates CT. Rumen fermentation parameters describing the degradation and the fate of the energetic and nitrogenous substrates were measured at 3.5 and 24 h. At the early fermentation stage, when the sainfoin level increased from 0 to 1000 g/kg, the ammonia concentration in the medium quadratically decreased from 3.20 to 0.53 mmol/l in absence of PEG (P<0.01) but not in its presence. This result demonstrates that sainfoin CT decreased the rumen degradation of the proteins in the whole mixture, including the proteins in cocksfoot, rather than just the proteins in sainfoin. Interestingly, the total gas and methane productions were lower in mixtures incubated in absence of PEG than in presence of PEG (P<0.001) while no significant PEG effect was observed on digestibility. At the late fermentation stage, a positive quadratic effect on dry matter digestibility was detected without PEG (P<0.05), indicating a synergistic action of cocksfoot plus sainfoin on plant substrate degradation due to CT. The presence of PEG increased gas production (P<0.001) and NH3-N concentration in the medium (P<0.001). Our results suggest that CT could allow a better utilization of plant substrates in mixtures by the rumen ecosystem by improving the partitioning of degraded substrates toward lower gas losses, and decreasing the protein degradation.