41 resultados para Bond

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the bond scheme, a pre-determined series of payments would compensate farmers for lost revenues resulting from policy change. Unlike the Single Payment Scheme, payments would be fully decoupled: recipients would not have to retain farmland, or remain in agriculture. If vested in a paper asset, the guaranteed, unencumbered, income stream would be similar to that from a government bond. Recipients could exchange this for a capital sum reflecting the net present value of future payments, and reinvest in other business ventures, either on- or offfarm.With a finite, declining flow of payments, budget expenditure would reduce, releasing funds for other uses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The absolute intensities of all except one of the infra-red fundamental vibration bands of dimethyl acetylene have been determined, and the results have been used to compute polar properties of the C—H and C—C bonds. It has been found that if the very probable assumption is made that the acetylenic carbon atoms carry a residual negative charge, the hydrogen atoms in the C—H bonds must carry a residual positive charge. The probable value of the C—H dipole is about 04 Debye, and that of the C—C bond about 1 Debye. Comparisons have been made with the results of similar work with related molecules.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the disulfide bond in amyloid-like fibrillogenesis in a model peptide system Apurba Kumar Das,(a) Michael G. B. Drew,(b) Debasish Haldar(a) and Arindam Banerjee*(a) (a)Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India. E-mail: bcab@mahendra.iacs.res.in; Fax: +91-33-2473-2805 b School of Chemistry, The University of Reading, Whiteknights, Reading, UK RG6 6AD Received 28th June 2005, Accepted 20th July 2005 First published as an Advance Article on the web 11th August 2005

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of 2,2'-dithiodipyridine (DTDP) with cis-Ru(bpy)(2)Cl-2 (bpy = 2,2'-bipyridine) and cis-Ru(phen)(2)Cl-2 (phen = 1,10-phenanthroline) respectively yields the dicationic species [Ru(bpy) (2)(DTDP)](2+) and [Ru(phen)(2) (DTDP)](2+) in which the S-S bond of DTDP remains intact. The S-S bond undergoes a reductive cleavage when DTDP is reacted with cis-Ru(bisox)(2)Cl-2 (bisox = 4,4,4',4'-tetramethyl-2,2'-bisoxazoline) under identical conditions to generate the monocationic species [Ru(bisox)(2)(2-thiolatopyridine)]. The intramolecular electron transfer between the metal and the S-S bond is found to be subtly controlled by the crystal field strength of the ancillary bidentate N-donor ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new basal-apical, mu(2)-1,1-azide bridged complexes, [CuL1(N-3)](2) (1), [CuL2(N-3)](2) (2) and [CuL3(N-3)]2 (3) with very similar tridentate Schiff base blocking ligands [L-1=N-(3-aminopropyl) salicylaldimine, L-2=7-amino-4-methyl-5-azahept-3-en-2-one and L-3=8-amino-4-methyl-5-azaoct-3-en-2-one) have been synthesised and their molecular structures determined by X-ray crystallography. In complex 1, there is no inter-dimer H-bonding. However, complexes 2 and 3 form two different supramolecular structures in which the dinuclear entities are linked by strong H-bonds giving one-dimensional systems. Variable-temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K reveal that complexes 1 and 2 have antiferromagnetic coupling while 3 has ferromagnetic coupling which is also confirmed by EPR spectra at 4-300 K. Magnetostructural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds in complexes 2 and 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, characterisation, X-ray single crystal structures and magnetic properties of three new basal-apical mu(2)-1,1-azide-bridged complexes [(CuLN3)-N-1](2) (1), [(CuLN3)-N-2](2) (2) and [(CuLN3)-N-3](2) (3) with very similar tridentate Schiff-base blocking ligands {HL1 = N-[2-(ethylamino) ethyl] salicylaldimine; HL2 = 7-(ethylamino)-4-methyl-5-azahept-3-en-2-one; HL3 = 7-amino-4-methyl-5-azaoct-3-en-2-one} have been reported [complex 1: monoclinic, P2(1)/c, a = 8.390(2), b = 7.512(2), c = 19.822(6) Angstrom, beta = 91.45(5)degrees; complex 2: monoclinic, P2(1)/c, a = 8.070(9), b = 9.787(12), c = 15.743(17) A, beta = 98.467(10)degrees; complex 3: monoclinic, P2(1)/n, a = 5.884(7), b = 16.147(18), c = 11.901(12) Angstrom, beta = 90.050(10)degrees]. The structures consist of neutral dinuclear entities resulting from the pairing of two mononuclear units through end-on azide bridges connecting an equatorial position of one copper centre to an axial position of the other, The copper ions adopt a (4+1) square-based geometry in all the complexes. In complex 2, there is no inter-dimer hydrogen-bonding. However, complexes 1 and 3 form two different supramolecular structures in which the dinuclear entities are linked by H-bonds giving one-dimensional systems. Variable temperature (300-2 K) magnetic-susceptibility measurements and magnetisation measurements at 2 K reveal that all three complexes have antiferromagnetic coupling. Magneto-structural correlations have been made taking into consideration both the azido bridging ligands and the existence of intermolecular hydrogen bonds. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HL and MeL are prepared by condensing benzil dihydrazone with 2-formylpyridine and 2-acetylpyridine, respectively, in 1:2 molar proportions. While in a reaction with [Ru-(C6H6)Cl-2](2), HL yields the cation [Ru(C6H6){5,6-diphenyl-3-(pyridin-2-yl)- 1,2,4-triazine}Cl](+), MeL gives the cation [Ru(C6H6)(MeL)Cl](+). Both the cations are isolated as their hexafluorophosphate salts and characterised by X-ray crystallography. In the case of HL, double domino electrocyclic/elimination reactions are found to occur. The electrocyclic reaction occurs in a C=N-N=C-C=N fragment of HL and the elimination reaction involves breaking of a C-H bond of HL. Density functional calculations on model complexes indicate that the identified electrocyclic reaction is thermochemically as well as kinetically feasible for both HL and MeL in the gas phase. For a double domino reaction, similar to that operative in HL, to occur for MeL, breaking of a C-C bond would be required in the elimination step. Our model calculations show the energy barrier for this elimination step to be much higher (329.1 kJ mol(-1)) for MeL than that for HL (96.3 kJ mol(-1)). Thus, the domino reaction takes place for HL and not for MeL. This accounts for the observed stability of [Ru(C6H6)-(MeL)Cl](+) under the reaction conditions employed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantio-specific interactions on intrinsically chiral or chirally modified surfaces can be identified experimentally via comparison of the adsorption geometries of similar nonchiral and chiral molecules. Information about the effects of substrate-related and in interactions on the adsorption geometry of glycine, the only natural nonchiral amino acid, is therefore important for identifying enantio-specific interactions of larger chiral amino acids. We have studied the long- and short-range adsorption geometry and bonding properties of glycine on the intrinsically chiral Cu{531} surface with low-energy electron diffraction, near-edge X-ray absorption One structure spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. For coverages between 0.15 and 0.33 ML (saturated chemisorbed layer) and temperatures between 300 and 430 K, glycine molecules adsorb in two different azimuthal orientations, which are associated with adsorption sites on the {110} and {311} microfacets of Cu{531}. Both types of adsorption sites allow a triangular footprint with surface bonds through the two oxygen atoms and the nitrogen atom. The occupation of the two adsorption sites is equal for all coverages, which can be explained by pair formation due to similar site-specific adsorption energies and the possibility of forming hydrogen bonds between molecules on adjacent {110} and {311} sites. This is not the ease for alanine and points toward higher site specificity in the case of alanine, which is eventually responsible for the enantiomeric differences observed for the alanine system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reduction of the triangular clusters [Os-3(CO)(10)(alpha-dimine)] (alpha-dimine = 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym)) and [Os-3(CO)(10)(mu-bpym) ReBr(CO)(3)] produces primarily the corresponding radical anions. Their stability is strongly determined by the pi acceptor ability of the reducible alpha-dimine ligand, which decreases in the order mu-bpym > bpym >> bpy. Along this series, increasing delocalisation of the odd electron density in the radical anion over the Os(alpha-dimine) chelate ring causes weakening of the axial (CO)(4)Os-Os(CO)(2)(alpha-dimine) bond and its facile cleavage for alpha-diimine = bpy. In contrast, the cluster radical anion is inherently stable for the bridging bpym ligand, the strongest pi-acceptor in the studied series. In the absence of the partial delocalisation of the unpaired electron over the Re( bpym) chelate bond, the Os-3-core of the radical anion remains intact only at low temperatures. Subsequent one-electron reduction of [Os-3(CO)(10)(bpym)](center dot-) at T = 223 K gives the open-triosmium core (= Os-3*) dianion, [Os-3*(CO)(10)(bpym)](2-). Its oxidation leads to the recovery of parent [Os-3(CO)(10)( bpym)]. At room temperature, [Os-3*( CO)(10)(bpym)](2-) is formed along a two-electron (ECE) reduction path. The chemical step (C) results in the formation of an open- core radical anion that is directly reducible at the cathodic potential of the parent cluster in the second electrochemical (E) step. In weakly coordinating tetrahydrofuran, [Os-3*(CO)(10)( bpym)](2-) rapidly attacks yet non- reduced parent cluster molecules, producing the relatively stable open- core dimer [Os-3*(CO)(10)(bpym)](2)(2-) featuring two open- triangle cluster moieties connected with an ( bpym) Os - Os( bpym) bond. In butyronitrile, [Os-3*( CO)(10)(bpym)](2-) is stabilised by the solvent and the dimer [Os-3*(CO)(10)(bpym)](2)(2-) is then mainly formed by reoxidation of the dianion on reverse potential scan. The more reactive cluster [Os-3(CO)(10)(bpy)] follows the same reduction path, as supported by spectroelectrochemical results and additional valuable evidence obtained from cyclic voltammetric scans. The ultimate process in the reduction mechanism is fragmentation of the cluster core triggered by the reduction of the dimer [Os-3*(CO)(10)(alpha- diimine)](2)(2-). The products formed are [Os-2(CO)(8)](2-) and {Os(CO)(2)(alpha- diimine)}(2). The latter dinuclear fragments constitute a linear polymeric chain [Os( CO)(2)(alpha-dimine)] n that is further reducible at the alpha-dimine ligands. For alpha-dimine = bpy, the charged polymer is capable of reducing carbon dioxide. The electrochemical opening of the triosmium core in the [Os-3( CO)(10)(alpha-dimine)] clusters exhibits several common features with their photochemistry. The same Os-alpha-dimine bond dissociates in both cases but the intimate mechanisms are different.