4 resultados para Body measurements
em CentAUR: Central Archive University of Reading - UK
Resumo:
Measurements of body weight, total body water and total body potassium (40K) were made serially on three occasions during pregnancy and once post partum in 27 normal pregnant women. Skinfold thickness and fat cell diameter were also measured. A model of body composition was formulated to permit the estimation of changes in fat, lean tissue and water content of the maternal body. Total maternal body fat increased during pregnancy, reaching a peak towards the end of the second trimester before diminishing. Serial measurements of fat cell diameter showed poor correlation, whilst total body fat calculated from skinfold thickness correlated well with our estimated values for total body fat in pregnancy.
Resumo:
Obesity is a key factor in the development of the metabolic syndrome (MetS), which is associated with increased cardiometabolic risk. We investigated whether obesity classification by body mass index (BMI) and body fat percentage (BF%) influences cardiometabolic profile and dietary responsiveness in 486 MetS subjects (LIPGENE dietary intervention study). Anthropometric measures, markers of inflammation and glucose metabolism, lipid profiles, adhesion molecules and haemostatic factors were determined at baseline and after 12 weeks of 4 dietary interventions (high saturated fat (SFA), high monounsaturated fat (MUFA) and 2 low fat high complex carbohydrate (LFHCC) diets, 1 supplemented with long chain n-3 polyunsaturated fatty acids (LC n-3 PUFAs)). 39% and 87% of subjects classified as normal and overweight by BMI were obese according to their BF%. Individuals classified as obese by BMI (± 30 kg/m2) and BF% (± 25% (men) and ± 35% (women)) (OO, n = 284) had larger waist and hip measurements, higher BMI and were heavier (P < 0.001) than those classified as non-obese by BMI but obese by BF% (NOO, n = 92). OO individuals displayed a more pro-inflammatory (higher C reactive protein (CRP) and leptin), pro-thrombotic (higher plasminogen activator inhibitor-1 (PAI-1)), pro-atherogenic (higher leptin/adiponectin ratio) and more insulin resistant (higher HOMA-IR) metabolic profile relative to the NOO group (P < 0.001). Interestingly, tumour necrosis factor alpha (TNF-α) concentrations were lower post-intervention in NOO individuals compared to OO subjects (P < 0.001). In conclusion, assessing BF% and BMI as part of a metabotype may help identify individuals at greater cardiometabolic risk than BMI alone.
Resumo:
Background Whole grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. Objective The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology and gastrointestinal symptoms in healthy, middle-age adults with habitual WG intake < 24 g/d. The trial was registered as ISRCTN36521837. Methods Eligible subjects (12 men, 21 women, aged 40-65 y and BMI 20-35 kg/m2) were identified using food frequency questionnaires and subsequently completed 3-day food diaries (3DFD) to confirm habitual WG consumption. Subjects consumed diets high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain [RG] diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence was achieved by specific dietary advice and provision of a range of cereal food products. The 3DFD, diet compliance diaries and plasma alkylresorcinols (ARs) were used to verify compliance. Results On the WG intervention, consumption increased from 28 g/d to 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and total fiber intake (P < 0.001), without any effect on energy or other macronutrients. While there were no effects on studied parameters, there were trends towards increased 24 h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG compared to the RG period. Conclusion A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical parameters, body composition, BP, fecal measurements or gut microbiology.
Resumo:
Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec[AU1: Add manufacturer name and location.]; 260 g of oil/ kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.