8 resultados para BoG
em CentAUR: Central Archive University of Reading - UK
Resumo:
Palaeoecological analysis of peat deposits from a small bog, combined with pollen analysis of sediments infilling the moat of the nearby Teutonic Order castle at Malbork, have been used to examine the ecological impact of the Crusades on the late-medieval landscape of Northern Poland. Studies of the environmental impact of the Crusades have been almost exclusively informed by written sources; this study is the first of its type to directly investigate the environmental context of Crusading as a force of ecological transformation on the late-medieval Baltic landscape. The pollen evidence from Malbork Castle and its hinterland demonstrate that the 12th/13th–15th centuries coincide with a marked transformation in vegetation and land-use, characterized by clearance of broadleaved woodland and subsequent agricultural intensification, particularly during the 14th/15th centuries. These changes are ascribed to landscape transformations associated with the Teutonic Order’s control of the landscape from the mid-13th century. Human activity identified in the pollen record prior to this is argued to reflect the activities of Pomeranian settlers in the area. This paper also discusses the broader palaeoecological evidence for medieval landscape change across Northern Poland.
Resumo:
The notion that wetlands are among the most productive environments in the world is widely quoted, but its relationship with the exploitation of wetland ecosystems during the prehistoric and early historic period has been the subject of few investigations. The current paper discusses the primary production of different wetland habitats and its relationship to the resource potential of these habitats and their actual exploitation, using recent results from the Humber Wetlands Survey. It is argued that during the early Holocene, wetland landscapes were central to the subsistence economy and that a clear association exists between the primary productivity of wetlands and the intensity of exploitation. With the introduction of agriculture, however, wetland habitats become increasingly peripheral to the economy.
Resumo:
Results of extensive site reconnaissance on the Isles of Tiree, Coll and north-west Mull, Inner Hebrides are presented. Pollen-stratigraphic records were compiled from a profile from Glen Aros, north-west Mull and from two profiles on Coll located at Loch an t-Sagairt and Caolas an Eilean. Quantification of microscopic charcoal provided records that were used to facilitate a preliminary evaluation of the causal driving mechanisms of vegetation change. Bayesian modelling of radiocarbon dates was used to construct preliminary chronological frameworks for these records. Basal sedimentary deposits at Glen Aros contain pollen records that correspond with vegetation succession typical of the early Holocene dating to c. 11,370 cal BP. Woodland development is a key feature of the pollen records dating to the early Holocene, while records from Loch an t-Sagairt show that blanket mire communities were widespread in north-west Coll by c. 9800 cal BP. The Corylus-rise is dated to c. 10,710 cal BP at Glen Aros and c. 9905 cal BP at Loch an t-Sagairt, with records indicating extensive cover of hazel woodland with birch. All of the major arboreal taxa were recorded, though Quercus and Ulmus were nowhere widespread. Analysis of wood charcoal remains from a Mesolithic site at Fiskary Bay, Coll indicate that Salix and Populus are likely to be under-represented in the pollen records. Reconstructed isopoll maps appear to underplay the importance of alder in western Scotland during the mid-Holocene. Alder-rise expansions in microscopic charcoal dating to c. 7300 cal BP at Glen Aros and c. 6510 to 5830 cal BP on Coll provide records of significance to the issue of human-induced burning related to the expansion of alder in Britain. Increasing frequencies in microscopic charcoal are correlated with mid-Holocene records of increasing aridity in western Scotland after c. 7490 cal BP at Glen Aros, 6760 cal BP at Loch an t-Sagairt and 6590 cal BP at Caolas an Eilean, while several phases of increasing bog surface wetness were detected in the Loch an t-Sagairt archive during the Holocene. At least five phases of small-scale woodland disturbance during the Mesolithic period were identified in the Glen Aros profile dating to c. 11,650 cal BP, 9300 cal BP, 7840 cal BP, 7040 cal BP and 6100 cal BP. The timing of the third phase is coincident with evidence of Mesolithic settlement at Creit Dhu, north-west Mull. Three phases of small-scale woodland disturbance were detected at Loch an t-Sagairt dating to c. 9270 cal BP, 8770 cal BP and 8270 cal BP, all of which overlap chronologically with evidence of Mesolithic activity at Fiskary Bay, Coll. A number of these episodes are aligned chronologically with phases of Holocene climate variability such as the 8.2 K event.
Examining the relationships between Holocene climate change, hydrology, and human society in Ireland
Resumo:
This thesis explores human-environment interactions during the Mid-Late Holocene in raised bogs in central Ireland. The raised bogs of central Ireland are widely-recognised for their considerable palaeoenvironmental and archaeological resources: research over the past few decades has established the potential for such sites to preserve sensitive records of Holocene climatic variability expressed as changes in bog surface wetness (BSW); meanwhile archaeological investigations over the past century have uncovered hundreds of peatland archaeological features dating from the Neolithic through to the Post-Medieval period including wooden trackways, platforms, and deposits of high-status metalwork. Previous studies have attempted to explore the relationship between records of past environmental change and the occurrence of peatland archaeological sites reaching varying conclusions. More recently, environmentally-deterministic models of human-environment interaction in Irish raised bogs at the regional scale have been explicitly tested leading to the conclusion that there is no relationship between BSW and past human activity. These relationships are examined in more detail on a site-by-site basis in this thesis. To that end, testate amoebae-derived BSW records from nine milled former raised bogs in central Ireland were produced from sites with known and dated archaeological records. Relationships between BSW records and environmental conditions within the study area were explored through both the development of a new central Ireland testate amoebae transfer function and through comparisons between recent BSW records and instrumental weather data. Compilation of BSW records from the nine fossil study sites show evidence both for climate forcing, particularly during 3200-2400 cal BP, as well as considerable inter-site variability. Considerable inter-site variability was also evident in the archaeological records of the same sites. Whilst comparisons between BSW and archaeological records do not show a consistent linear relationship, examination of records on a site-by-site basis were shown to reveal interpretatively important contingent relationships. It is concluded therefore, that future research on human-environment interactions should focus on individual sites and should utilise theoretical approaches from the humanities in order to avoid the twin pitfalls of masking important local patterns of change, and of environmental determinism.
Resumo:
Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic activity as a driver of this major landscape change.
Resumo:
Blanket bog occupies approximately 6% of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash) based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka) and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanketbog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts that large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland,Wales, and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre- Neolithic) blanket-bog initiation at over half of the sites in the core areas of Scotland and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later expansion of blanket bogs in the UK, and it is not necessary to invoke anthropogenic activity as a driver of this major landscape change.