41 resultados para Blackburn, Josh

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A multiple regression analysis of the NCEP-NCAR reanalysis dataset shows a response to increased solar activity of a weakening and poleward shift of the subtropical jets. This signal is separable from other influences, such as those of El Nino-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO), and is very similar to that seen in previous studies using global circulation models (GCMs) of the effects of an increase in solar spectral irradiance. The response to increased stratospheric (volcanic) aerosol is found in the data to be a weakening and equatorward shift of the jets. The GCM studies of the solar influence also showed an impact on tropospheric mean meridional circulation with a weakening and expansion of the tropical Hadley cells and a poleward shift of the Ferrel cells. To understand the mechanisms whereby the changes in solar irradiance affect tropospheric winds and circulation, experiments have been carried out with a simplified global circulation model. The results show that generic heating of the lower stratosphere tends to weaken the subtropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low-latitude heating forcing them to move poleward, and high-latitude or latitudinally uniform heating forcing them equatorward. The patterns of response are similar to those that are found to be a result of the solar or volcanic influences, respectively, in the data analysis. This demonstrates that perturbations to the heat balance of the lower stratosphere, such as those brought about by solar or volcanic activity, can produce changes in the mean tropospheric circulation, even without any direct forcing below the tropopause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence on the summer flow over Asia of both the orographic and thermal forcing of the Tibetan Plateau is investigated using a sequence of idealised experiments with a global primitive equation model. The zonally averaged flow is prescribed and both realistic and idealised orography and heating are used. There is some similarity between the responses to the two forcings when applied separately. The upper tropospheric Tibetan anticyclone is predominantly forced by the heating but also weakly by the orography. Below this, both forcings tend to give air descending in an equatorward anticyclonic circulation down the isentropes to the west and rising in a similar poleward circulation to the east. However the heating-only response has a strong ascending southwesterly flow that is guided around the south and south-east of the orography when it is included. On the northern side, the westerly flow over the orography gives ascent on the upslope and descent on the downslope. It is found that heating over the Plateau leads to a potential vorticity (PV) minimum and that if it is sufficiently strong the flow is unstable, producing a quasi-biweekly oscillation. During this oscillation the Tibetan anticyclone changes between a single centre over the southwestern side of the Plateau and a split/double structure with centres over China and the Middle East. These characteristics are similar to observed variability in the region. Associated with this quasi-biweekly oscillation are significant variations in the strength of the ascent over the Plateau and the Rossby wave pattern over the North Pacific. The origin of the variability is instability associated with the zonally extended potential vorticity PV minimum on a θ-surface, as proposed by Hsu and Plumb (2000). This minimum is due to the tendency to reduce the PV above the heating over the Plateau and to advection by the consequent anticyclone of high PV around from the east and low PV to the west. The deep convection to the south and southeast of the Plateau tends to suppress the quasi-biweekly oscillation because the low PV produced above it acts to reduce the meridional PV gradient reversal. The occurrence of the oscillation depends on the relative magnitude of the heating in the two regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes the hypothesis that the low-frequency variability of the North Atlantic Oscillation (NAO) arises as a result of variations in the occurrence of upper-level Rossby wave–breaking events over the North Atlantic. These events lead to synoptic situations similar to midlatitude blocking that are referred to as high-latitude blocking episodes. A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently. A similar, but weaker, relationship exists between wave breaking over the Pacific and the west Pacific pattern. Evidence is given to support this hypothesis by using a two-dimensional potential-vorticity-based index to identify wave breaking at various latitudes. This is applied to Northern Hemisphere winter data from the 40-yr ECMWF Re-Analysis (ERA-40), and the events identified are then related to the NAO. Certain dynamical precursors are identified that appear to increase the likelihood of wave breaking. These suggest mechanisms by which variability in the tropical Pacific, and in the stratosphere, could affect the NAO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tropospheric response to midlatitude SST anomalies has been investigated through a series of aquaplanet simulations using a high-resolution version of the Hadley Centre atmosphere model (HadAM3) under perpetual equinox conditions. Model integrations show that increases in the midlatitude SST gradient generally lead to stronger storm tracks that are shifted slightly poleward, consistent with changes in the lower-tropospheric baroclinicity. The large-scale atmospheric response is, however, highly sensitive to the position of the SST gradient anomaly relative to that of the subtropical jet in the unperturbed atmosphere. In particular, when SST gradients are increased very close to the subtropical jet, then the Hadley cell and subtropical jet is strengthened while the storm track and eddy-driven jet are shifted equatorward. Conversely, if the subtropical SST gradients are reduced and the midlatitude gradients increased, then the storm track shows a strong poleward shift and a well-separated eddy-driven jet is produced. The sign of the SST anomaly is shown to play a secondary role in determining the overall tropospheric response. These findings are used to provide a new and consistent interpretation of some previous GCM studies concerning the atmospheric response to midlatitude SST anomalies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper shows how the rainfall distribution over the UK, in the three major events on 13-15 June, 25 June and 20 July 2007, was related to troughs in the upper-level flow, and investigates the relationship of these features to a persistent large-scale flow pattern which extended around the northern hemisphere and its possible origins. Remote influences can be mediated by the propagation of large-scale atmospheric waves across the northern hemisphere and also by the origins of the air-masses that are wrapped into the developing weather systems delivering the rain to the UK. These dynamical influences are examined using analyses and forecasts produced by a range of atmospheric models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sensitivity of the UK Universities Global Atmospheric Modelling Programme (UGAMP) General Circulation Model (UGCM) to two very different approaches to convective parametrization is described. Comparison is made between a Kuo scheme, which is constrained by large-scale moisture convergence, and a convective-adjustment scheme, which relaxes to observed thermodynamic states. Results from 360-day integrations with perpetual January conditions are used to describe the model's tropical time-mean climate and its variability. Both convection schemes give reasonable simulations of the time-mean climate, but the representation of the main modes of tropical variability is markedly different. The Kuo scheme has much weaker variance, confined to synoptic frequencies near 4 days, and a poor simulation of intraseasonal variability. In contrast, the convective-adjustment scheme has much more transient activity at all time-scales. The various aspects of the two schemes which might explain this difference are discussed. The particular closure on moisture convergence used in this version of the Kuo scheme is identified as being inappropriate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high resolution regional atmosphere model is used to investigate the sensitivity of the North Atlantic storm track to the spatial and temporal resolution of the sea surface temperature (SST) data used as a lower boundary condition. The model is run over an unusually large domain covering all of the North Atlantic and Europe, and is shown to produce a very good simulation of the observed storm track structure. The model is forced at the lateral boundaries with 15–20 years of data from the ERA-40 reanalysis, and at the lower boundary by SST data of differing resolution. The impacts of increasing spatial and temporal resolution are assessed separately, and in both cases increasing the resolution leads to subtle, but significant changes in the storm track. In some, but not all cases these changes act to reduce the small storm track biases seen in the model when it is forced with low-resolution SSTs. In addition there are several clear mesoscale responses to increased spatial SST resolution, with surface heat fluxes and convective precipitation increasing by 10–20% along the Gulf Stream SST gradient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and predicting changes in storm tracks over longer time scales is a challenging problem, particularly in the North Atlantic. This is due in part to the complex range of forcings (land–sea contrast, orography, sea surface temperatures, etc.) that combine to produce the structure of the storm track. The impact of land–sea contrast and midlatitude orography on the North Atlantic storm track is investigated through a hierarchy of GCM simulations using idealized and “semirealistic” boundary conditions in a high-resolution version of the Hadley Centre atmosphere model (HadAM3). This framework captures the large-scale essence of features such as the North and South American continents, Eurasia, and the Rocky Mountains, enabling the results to be applied more directly to realistic modeling situations than was possible with previous idealized studies. The physical processes by which the forcing mechanisms impact the large-scale flow and the midlatitude storm tracks are discussed. The characteristics of the North American continent are found to be very important in generating the structure of the North Atlantic storm track. In particular, the southwest–northeast tilt in the upper tropospheric jet produced by southward deflection of the westerly flow incident on the Rocky Mountains leads to enhanced storm development along an axis close to that of the continent’s eastern coastline. The approximately triangular shape of North America also enables a cold pool of air to develop in the northeast, intensifying the surface temperature contrast across the eastern coastline, consistent with further enhancements of baroclinicity and storm growth along the same axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simplified general circulation model has been used to investigate the chain of causality whereby changes in tropospheric circulation and temperature are produced in response to stratospheric heating perturbations. Spinup ensemble experiments have been performed to examine the evolution of the tropospheric circulation in response to such perturbations. The primary aim of these experiments is to investigate the possible mechanisms whereby a tropospheric response to changing solar activity over the 11-yr solar cycle could be produced in response to heating of the equatorial lower stratosphere. This study therefore focuses on a stratospheric heating perturbation in which the heating is largest in the tropics. For comparison, experiments are also performed in which the stratosphere is heated uniformly at all latitudes and in which it is heated preferentially in the polar region. Thus, the mechanisms discussed have a wider relevance for the impact of stratospheric perturbations on the troposphere. The results demonstrate the importance of changing eddy momentum fluxes in driving the tropospheric response. This is confirmed by the lack of a similar response in a zonally symmetric model with fixed eddy forcing. Furthermore, it is apparent that feedback between the tropospheric eddy fluxes and tropospheric circulation changes is required to produce the full model response. The quasigeostrophic index of refraction is used to diagnose the cause of the changes in eddy behavior. It is demonstrated that the latitudinal extent of stratospheric heating is important in determining the direction of displacement of the tropospheric jet and storm track.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been previously demonstrated that extensive activation in the dorsolateral temporal lobes associated with masking a speech target with a speech masker, consistent with the hypothesis that competition for central auditory processes is an important factor in informational masking. Here, masking from speech and two additional maskers derived from the original speech were investigated. One of these is spectrally rotated speech, which is unintelligible and has a similar (inverted) spectrotemporal profile to speech. The authors also controlled for the possibility of “glimpsing” of the target signal during modulated masking sounds by using speech-modulated noise as a masker in a baseline condition. Functional imaging results reveal that masking speech with speech leads to bilateral superior temporal gyrus (STG) activation relative to a speech-in-noise baseline, while masking speech with spectrally rotated speech leads solely to right STG activation relative to the baseline. This result is discussed in terms of hemispheric asymmetries for speech perception, and interpreted as showing that masking effects can arise through two parallel neural systems, in the left and right temporal lobes. This has implications for the competition for resources caused by speech and rotated speech maskers, and may illuminate some of the mechanisms involved in informational masking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuing importance of blue denim maintains indigo as an important vat dye industrially. In this review, we examine the various methods that have been used in the past and are currently used to reduce and dissolve indigo for dyeing. We discuss recent insights into the bacterial fermentation technology, the advantages and disadvantages of the direct chemical methods that have predominated for the last century and potentially cleaner technologies of catalytic hydrogenation and electrochemistry, which are becoming increasingly important. With considerations of environmental impact high on the dyeing industry's agenda, we also discuss the developments that have led to the production of pre-reduced indigo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Individuals with elevated levels of plasma low density lipoprotein (LDL) cholesterol (LDL-C) are considered to be at risk of developing coronary heart disease. LDL particles are removed from the blood by a process known as receptor-mediated endocytosis, which occurs mainly in the liver. A series of classical experiments delineated the major steps in the endocytotic process; apolipoprotein B-100 present on LDL particles binds to a specific receptor (LDL receptor, LDL-R) in specialized areas of the cell surface called clathrin-coated pits. The pit comprising the LDL-LDL-R complex is internalized forming a cytoplasmic endosome. Fusion of the endosome with a lysosome leads to degradation of the LDL into its constituent parts (that is, cholesterol, fatty acids, and amino acids), which are released for reuse by the cell, or are excreted. In this paper, we formulate a mathematical model of LDL endocytosis, consisting of a system of ordinary differential equations. We validate our model against existing in vitro experimental data, and we use it to explore differences in system behavior when a single bolus of extracellular LDL is supplied to cells, compared to when a continuous supply of LDL particles is available. Whereas the former situation is common to in vitro experimental systems, the latter better reflects the in vivo situation. We use asymptotic analysis and numerical simulations to study the longtime behavior of model solutions. The implications of model-derived insights for experimental design are discussed.