7 resultados para Biometric menagerie
em CentAUR: Central Archive University of Reading - UK
Resumo:
A Universal Serial Bus (USB) Mass Storage Device (MSD), often termed a USB flash drive, is ubiquitously used to store important information in unencrypted binary format. This low cost consumer device is incredibly popular due to its size, large storage capacity and relatively high transfer speed. However, if the device is lost or stolen an unauthorized person can easily retrieve all the information. Therefore, it is advantageous in many applications to provide security protection so that only authorized users can access the stored information. In order to provide security protection for a USB MSD, this paper proposes a session key agreement protocol after secure user authentication. The main aim of this protocol is to establish session key negotiation through which all the information retrieved, stored and transferred to the USB MSD is encrypted. This paper not only contributes an efficient protocol, but also does not suffer from the forgery attack and the password guessing attack as compared to other protocols in the literature. This paper analyses the security of the proposed protocol through a formal analysis which proves that the information is stored confidentially and is protected offering strong resilience to relevant security attacks. The computational cost and communication cost of the proposed scheme is analyzed and compared to related work to show that the proposed scheme has an improved tradeoff for computational cost, communication cost and security.
Resumo:
This paper discusses the RFID implants for identification via a sensor network. Brain-computer implants linked in to a wireless network. Biometric identification via body sensors is also discussed. The use of a network as a means for remote and distance monitoring of humans opens up a range of potential uses. Where implanted identification is concerned this immediately offers high security access to specific areas by means of only an RFID device. If a neural implant is employed then clearly the information exchanged with a network can take on a much richer form, allowing for identification and response to an individual's needs based on the signals apparent on their nervous system.
Resumo:
An ongoing controversy in Amazonian palaeoecology is the manner in which Amazonian rainforest communities have responded to environmental change over the last glacial–interglacial cycle. Much of this controversy results from an inability to identify the floristic heterogeneity exhibited by rainforest communities within fossil pollen records. We apply multivariate (Principal Components Analysis) and classification (Unweighted Pair Group with Arithmetic Mean Agglomerative Classification) techniques to floral-biometric, modern pollen trap and lake sediment pollen data situated within different rainforest communities in the tropical lowlands of Amazonian Bolivia. Modern pollen rain analyses from artificial pollen traps show that evergreen terra firme (well-drained), evergreen terra firme liana, evergreen seasonally inundated, and evergreen riparian rainforests may be readily differentiated, floristically and palynologically. Analogue matching techniques, based on Euclidean distance measures, are employed to compare these pollen signatures with surface sediment pollen assemblages from five lakes: Laguna Bella Vista, Laguna Chaplin, and Laguna Huachi situated within the Madeira-Tapajós moist forest ecoregion, and Laguna Isirere and Laguna Loma Suarez, which are situated within forest patches in the Beni savanna ecoregion. The same numerical techniques are used to compare rainforest pollen trap signatures with the fossil pollen record of Laguna Chaplin.
Resumo:
Automated border control (ABC) is concerned with fast and secure processing for intelligence-led identification. The FastPass project aims to build a harmonised, modular reference system for future European ABC. When biometrics is taken on board as identity, spoofing attacks become a concern. This paper presents current research in algorithm development for counter-spoofing attacks in biometrics. Focussing on three biometric traits, face, fingerprint, and iris, it examines possible types of spoofing attacks, and reviews existing algorithms reported in relevant academic papers in the area of countering measures to biometric spoofing attacks. It indicates that the new developing trend is fusion of multiple biometrics against spoofing attacks.
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.
Resumo:
Multibiometrics aims at improving biometric security in presence of spoofing attempts, but exposes a larger availability of points of attack. Standard fusion rules have been shown to be highly sensitive to spoofing attempts – even in case of a single fake instance only. This paper presents a novel spoofing-resistant fusion scheme proposing the detection and elimination of anomalous fusion input in an ensemble of evidence with liveness information. This approach aims at making multibiometric systems more resistant to presentation attacks by modeling the typical behaviour of human surveillance operators detecting anomalies as employed in many decision support systems. It is shown to improve security, while retaining the high accuracy level of standard fusion approaches on the latest Fingerprint Liveness Detection Competition (LivDet) 2013 dataset.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.