1 resultado para Biological clock

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Light patterns have less effect on numbers of eggs laid by current stocks than on those of forty years ago, but the principles have not changed. Ovarian activity is stimulated by increasing photoperiods and suppressed by decreasing photoperiods. The light pattern used during rearing can still have large effects on age at 50% lay, even for modern stocks. Early sexual maturity maximises egg numbers but gives smaller eggs. Late maturity maximises egg size at the expense of numbers. The relationship between egg output (g/hen d) and age at first egg is curvilinear, with maximum yield occurring in flocks maturing in about the centre of their potential range. Fancy patterns of increasing daylength after maturity are probably not justified. A flock held on a constant 14h day will lay as many eggs as one given step up lighting. Intermittent lighting saves about 5% of feed consumption with no loss of output, provided that the feed has adequate amino acid content to allow for the reduced feed intake. Producers with light-proof laying houses should be taking advantage of intermittent lighting. The recommended light intensity for laying houses is still 10 lx, although the physiological threshold for response to changes in photoperiod is closer to 2 lx. Very dim (0.05 lx) light filtering into blacked out houses will not stimulate the hypothalamic receptors responsible for photo-sexual responses, but may affect the bird's biological clock, which can alter its response to a constant short photoperiod. Feed intake shows a curvilinear dependence on environmental temperature. At temperatures below the panting threshold, performance can be maintained by adjusting the feed so as to maintain an adequate intake of critical amino acids. Above the panting threshold, the hen is unable to take in enough energy to maintain normal output. There is no dietary modification which can effectively offset this problem. Diurnally cycling temperatures result in feed intake and egg production equivalent to that observed under a constant temperature equal to the mean of the cycle. When the poultry house is cooler at night than by day, it helps to provide light so that the birds can feed during the cooler part of the cycle.