2 resultados para Biochemical Evaluation

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The absorption of cocoa flavanols in the small intestine is limited, and the majority of the flavanols reach the large intestine where they may be metabolized by resident microbiota. OBJECTIVE: We assessed the prebiotic potential of cocoa flavanols in a randomized, double-blind, crossover, controlled intervention study. DESIGN: Twenty-two healthy human volunteers were randomly assigned to either a high-cocoa flavanol (HCF) group (494 mg cocoa flavanols/d) or a low-cocoa flavanol (LCF) group (23 mg cocoa flavanols/d) for 4 wk. This was followed by a 4-wk washout period before volunteers crossed to the alternant arm. Fecal samples were recovered before and after each intervention, and bacterial numbers were measured by fluorescence in situ hybridization. A number of other biochemical and physiologic markers were measured. RESULTS: Compared with the consumption of the LCF drink, the daily consumption of the HCF drink for 4 wk significantly increased the bifidobacterial (P < 0.01) and lactobacilli (P < 0.001) populations but significantly decreased clostridia counts (P < 0.001). These microbial changes were paralleled by significant reductions in plasma triacylglycerol (P < 0.05) and C-reactive protein (P < 0.05) concentrations. Furthermore, changes in C-reactive protein concentrations were linked to changes in lactobacilli counts (P < 0.05, R(2) = -0.33 for the model). These in vivo changes were closely paralleled by cocoa flavanol-induced bacterial changes in mixed-batch culture experiments. CONCLUSION: This study shows, for the first time to our knowledge, that consumption of cocoa flavanols can significantly affect the growth of select gut microflora in humans, which suggests the potential prebiotic benefits associated with the dietary inclusion of flavanol-rich foods. This trial was registered at clinicaltrials.gov as NCT01091922.