7 resultados para Benzaldehyde
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three new ruthenium complexes of the formulae cis-[Ru(PPh3)(2)(BzTscbz)(2)] (1a), [Ru-2(PPh3)(2)(BzTscbz)(4)] (1b) and [Ru(PPh3)(2)(BzTscHbz)(2)](ClO4)(2) (2) [BzTscHbz = 4-(phenyl) thiosemicarbazone of benzaldehyde] have been synthesized and characterized by various physicochemical methods including X-ray structure determinations for 1a and 1b. The relative stabilities of the four-membered versus five-membered chelate rings formed by the deprotonated ligand BzTscbz are discussed on the basis of the experimental results and some semi-empirical as well as DFT calculations. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The crystal structure of 4-phenyl-benzaldehyde reveals the presence of a dimer linked by the C=O and C( 9)-H groups of adjacent molecules. In the liquid phase, the presence of C-(HO)-O-... bonded forms is revealed by both vibrational and NMR spectroscopy. A Delta H value of - 8.2 +/- 0.5 kJ mol(-1) for the dimerisation equilibrium is established from the temperature-dependent intensities of the bands assigned to the carbonyl-stretching modes. The NMR data suggest the preferential engagement of the C(2,6)-H and C(10/12)/C(11)-H groups as hydrogen bond donors, instead of the C(9)-H group. While ab initio calculations for the isolated dimers are unable to corroborate these NMR results, the radial distribution functions obtained from molecular dynamics simulations show a preference for C(2,6)-H and C(10/12)/C(11)-(HO)-O-... contacts relative to the C(9)-(HO)-O-... ones.
Resumo:
Reaction of the 4-R-benzaldehyde thiosemicarbazones (denoted in general as L-R; R = OCH(3), CH(3), H, Cl and NO(2)) with trans-[Pd(PPh(3))(2)Cl(2)] afforded a group of mixed-ligand complexes (denoted in general as 1-R) incorporating a N,S-coordinated thiosemicarbazone. a triphenylphosphine and a chloride. Similar reaction with Na(2)[PdCl(4)] afforded a family of bis-thiosemicarbazone complexes (denoted in general as 2-R), where each ligand is N,S-coordinated. Crystal structures of 1-CH(3), 1-NO(2), 2-OCH(3), 2-NO(2) and L-NO(2) have been determined. In all the complexes the thiosemicarbazones are coordinated to the metal center, via dissociation of the acidic proton, as bidentate N,S-donors forming five-membered chelate rings. With reference to the structure of the uncoordinated thiosemicarbazone, this coordination mode is associated with a conformational change around the C=N bond. All the 1-R and 2-R complexes display intense absorptions in the visible region. Catalytic activity of the 1-R and 2-R complexes towards some C-C coupling reactions (e.g. Suzuki, Heck and Sonogashira) has been examined and while both are found to be efficient catalysts, 1-R is much better catalyst than 2-R.
Resumo:
Reaction of five 4R-benzaldehyde thiosemicarbazones (R = OCH3, CH3, H, Cl and NO2) with [ Ru(PPh3)(3)(-CO)(H) Cl] in refluxing methanol in the presence of a base (NEt3) affords complexes of two different types, viz. 1-R and 2-R. In the 1-R complexes the thiosemicarbazone is coordinated to ruthenium as a dianionic tridentate C,N,S-donor via C-H bond activation. Two triphenylphosphines and a carbonyl are also coordinated to ruthenium. The tricoordinated thiosemicarbazone ligand is sharing the same equatorial plane with ruthenium and the carbonyl, and the PPh3 ligands are mutually trans. In the 2-R complexes the thiosemicarbazone ligand is coordinated to ruthenium as a monoanionic bidentate N, S-donor forming a four-membered chelate ring with a bite angle of 63.91(11)degrees. Two triphenylphosphines, a carbonyl and a hydride are also coordinated to ruthenium. The coordinated thiosemicarbazone ligand, carbonyl and hydride constitute one equatorial plane with the metal at the center, where the carbonyl is trans to the coordinated nitrogen of the thiosemicarbazone and the hydride is trans to the sulfur. The two triphenylphosphines are trans. Structures of the 1-CH3 and 2-CH3 complexes have been determined by X-ray crystallography. All the complexes show intense transitions in the visible region, which are assigned, based on DFT calculations, to transitions within orbitals of the thiosemicarbazone ligand. Cyclic voltammetry on the complexes shows two oxidations of the coordinated thiosemicarbazone on the positive side of SCE and a reduction of the same ligand on the negative side.
Resumo:
Electrospun fibres based on polypyrrole have been prepared. The incorporation of preformed polypyrrole into fibres electrospun from a carrier polymer can only be achieved when materials are prepared with particulates smaller than the cross-section of the fibre; even so there are some problems, with the substantial loss of material from the electrode tip. As an alternative approach, soluble polypyrroles can be prepared but these are not of sufficient viscosity to prepare electrospun fibres, once again a carrier polymer must be employed. More effective loadings are gained by the process of coating the outer surface of a pre-spun fibre; in this way electrospun fibres coated with polypyrrole can be prepared. This approach has been adapted to produce silver coated polymer fibres by the use of copolymers of styrene and 3-vinyl benzaldehyde.
Resumo:
Using the 1:2 condensate (L) of diethylenetriamine and benzaldehyde as the main ligand, binuclear copper(l) complexes [Cu2L2(4,4'-bipyridine)](CIO4)(2).0.5H(2)O (1a) and [Cu2L2(1,2-bis(4-pyridyl)ethane)](CIO4)(2) (1b) are synthesised. The two metal ions in la are bridged by 4,4'-bipyridine and those in 1b by 1,2-bis(4-pyridyl)ethane, From the X-ray crystal structure of la, each metal ion is found to be bound to three N atoms of L and one of the two N atoms of the bridging ligand in a distorted tetrahedral fashion. The Cu(I)-N bond lengths in la lie in the range of 1.998(5)-2.229(6) Angstrom. Electrochemical studies in dichloromethane (DCM) show that the (Cu2N8)-N-I moieties in la and 1b are composed of two essentially non-interacting (CuN4)-N-I cores with Cu-II/I potential of 0.44 V vs. SCE. While la displays metal induced quenching of the inherent emission of 4,4'-bipyridine in DCM solution, 1b exhibits two weak emission bands in DCM solution at 425 and 477 nm (total quantum yield = 3.59 x 10(-5)) originating from MLCT excited states. With the help of Extended Huckel calculations it is established that the higher energy emission in 1b is from Cu(I) --> bridging-ligand charge transfer excited state and the lower energy one in 1b from Cu(I) --> L charge transfer excited state.
Resumo:
Lack of sulphur nutrition during potato cultivation has been shown to have profound effects on tuber composition, affecting in particular the concentrations of free asparagine, other amino acids and sugars. This is important because free asparagine and sugars react at high temperatures to form acrylamide, a suspect carcinogen. Free amino acids and sugars also form a variety of other compounds associated with colour and flavour. In this study the volatile aroma compounds formed in potato flour heated at 180 °C for 20 min were compared for three varieties of potato grown, with and without sulphur fertiliser. Approximately 50 compounds were quantified in the headspace extracts of the heated flour, of which over 40 were affected by sulphur fertilisation and/or variety. Many of the 41 compounds found at higher concentrations in the sulphur-deficient flour were Strecker aldehydes and compounds formed from their condensation, whereas only one compound, benzaldehyde, behaved in the same way as did acrylamide and was found at higher concentrations in the sulphur-sufficient flour. The reasons for these effects are discussed.