42 resultados para Beetle Communities

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcareous grasslands are an important habitat for floral and faunal communities in the UK and Europe. Declines due to changes in management, scrub invasion and agricultural improvement have left much of the remnants of this habitat in a degraded and fragmented state. Grazing, by cattle or sheep, is one of the main management practices used to maintain and improve the floral and faunal quality of calcareous grassland. The long-term impacts of different grazing regimes, however, are poorly understood, particularly in terms of the invertebrate communities. This study contrasted the impacts of recently introduced and long-term sheep or cattle grazing on beetle communities present on one of the largest areas of calcareous grassland in Europe, the Salisbury Plain military training Area, UK. No effects of grazing management on beetle abundance, species. richness or evenness were found, but plant diversity and overall percentage cover of grasses did influence beetle diversity. Proportions of the total number of individuals and overall species richness within beetle guilds (predatory, phytophagous, flower/seed feeders, root feeders and foliage feeders) were strongly influenced by both the duration and type of grazing animal. At the species level, beetle community structure showed significant differences between ungrazed, long-term cattle and long-term sheep grazing treatments. Changes in plant community structure were found to influence beetle community structure. The significance of these results is discussed in terms of the long-term impacts of grazing on beetle community structure, and the benefits of different grazing regimes for the conservation management of calcareous grasslands. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study investigates the function of non-cropped field margins in arable farming systems for enhancing the biodiversity value of beetle communities. Three different sown seed mixtures were used to establish field margins, a Countryside Stewardship mix, a fine grass and forbs mix and a tussock grass and forbs mix. The structure of beetle communities in the first full year of establishment was found to show no difference between the tussock grass and Countryside Stewardship margins. However, both differed from the fine grass margins, which supported lower overall abundance and species richness of beetles. This was attributed to small-scale architectural differences between species of fine and tussock grasses, rather than differences in plant composition. Body size distributions of beetles showed distinct similarities between the Countryside Stewardship and tussock margins. A greater abundance of large beetles was found in fine grass margins, although in all cases these body size distributions were attributed to a small number of species or a taxonomically distinct group. All three margin types included beetle species of conservation value. The importance of these results was discussed in the context of the value of these seed mixtures for invertebrate conversation. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Species-rich lowland hay meadows are of conservation importance for both plants and invertebrates; however, they have declined in area across Europe as a result of conversion to other land uses and management intensification. The re-creation of these grasslands on ex-arable land provides a valuable approach to increasing the extent and conservation value of this threatened habitat. Over a 3-year period a replicated block design was used to test whether introducing seeds promoted the re-creation of both plant and phytophagous beetle assemblages typical of a target hay meadow. Seeds were harvested from local hay meadows, and applied to experimental plots in the form of either green hay or brush harvesting seeds. Green hay spreading achieved the greatest success in re-creating plant and phytophagous beetle assemblages. While re-creation success increased over time for both taxa, for the phytophagous beetles the greatest increase in re-creation success relative to the establishment year also occurred where green hay was applied. We also considered the phytophagous beetles in terms of functional traits that describe host plant specificity, larval feeding location and dispersal. Phytophagous beetle functional trait composition was most similar to the target hay meadow assemblage where some form of seed addition was used, i.e. hay spreading or brush harvested seeds. This study identified the importance of introducing target plant species as a mechanism to promote the re-creation of phytophagous beetle communities. Seed addition methods (e.g. green hay spreading) are crucial to successful hay meadow re-creation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 60 years changes to the management of species-rich mesotrophic grasslands have resulted in the large-scale loss and degradation of this habitat across Europe. Restoration of such grasslands on agriculturally improved pastures provides a potentially valuable approach to the conservation of these threatened areas. Over a four-year period a replicated block design was used to test the effects of seed addition (green hay spreading and brush harvest collection) and soil disturbance on the restoration of phytophagous beetle and plant communities. Patterns of increasing restoration success, particularly where hay spreading and soil disturbance were used in combination, were identified for the phytophagous beetles. In the case of the plants, however, initial differences in restoration success in response to these same treatments were not followed by subsequent temporal changes in plant community similarity to target mesotrophic grassland. It is possible that the long-term consequences of the management treatments would not be the establishment of beetle and plant communities characteristic of the targets for restoration. Restoration management to enhance plant establishment using hay spreading and soil disturbance techniques would, however, still increase community similarity in both taxa to that of species-rich mesotrophic grasslands, and so raise their conservation value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flood-plain meadows (Alopecurus-Sanguisorba grassland) are a floristically rich community of conservation importance throughout Europe. Declines in their distribution due in part to modern farming practices mean they now cover less than 1500 ha in the UK. To investigate the effect of grazing regime during the re-creation of this grassland type, target plant species were sown onto ex-arable land during 1985. Traditional management, based on a July hay cut followed by aftermath grazing was subsequently instigated, and the site was divided into replicated grazing regimes of cattle, sheep and an un-grazed control. Plant and beetle assemblages were sampled and compared to those of target flood-plain meadows and improved grassland communities. Within the re-creation treatments the absence of aftermath grazing reduced beetle abundances and species richness. Assemblages of plants were closest to that of the target flood-plain meadow under sheep grazing, although this differed little from cattle grazing. Beetle species assemblages and functional group structure were, however, closest to the target grassland under cattle grazing. For all taxa the greatest resilience to succession to the target flood-plain meadow occurred when grazing was not part of the management prescription. Although successful re-creation had not been achieved for either the plants or beetles, cutting followed by aftermath cattle grazing has provided the best management to date. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grasslands restoration is a key management tool contributing to the long-term maintenance of insect populations, providing functional connectivity and mitigating against extinction debt across landscapes. As knowledge of grassland insect communities is limited, the lag between the initiation of restoration and the ability of these new habitats to contribute to such processes is unclear. Using ten data sets, ranging from 3 to 14 years, we investigate the lag between restoration and the establishment of phytophagous beetle assemblages typical of species rich grasslands. We used traits and ecological characteristics to determine factors limiting beetle colonisation, and also considered how food-web structure changed during restoration. For sites where seed addition of host-plants occurred the success in replicating beetle assemblages increased over time following a negative exponential function. Extrapolation beyond the existing data set tentatively suggested that success would plateau after 20 years, representing a c. 60% increase in assemblage similarity to target grasslands. In the absence of seed addition, similarity to the target grasslands showed no increase over time. Where seed addition was used the connectance of plant-herbivore food webs decreased over time, approaching values typical of species rich grasslands after c. 7 years. This trend was, however, dependent on the inclusion of a single site containing data in excess of 6 years of restoration management. Beetles not capable of flight, those showing high degrees of host-plant specialisation and species feeding on nationally rare host plants take between 1 and 3 years longer to colonise. Successful grassland restoration is underpinned by the establishment of host-plants, although individual species traits compound the effects of poor host-plant establishment to slow colonisation. The use of pro-active grassland restoration to mitigate against future environmental change should account for lag periods in excess of 10 years if the value of these habitats is to be fully realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding patterns in predator:prey systems and the mechanisms that underlie trophic interactions provides a basis for predicting community structure and the delivery of natural pest control services. The functional response of predators to prey density is a fundamental measure of interaction strength and its characterisation is essential to understanding these processes. We used mesocosm experiments to quantify the functional responses of five ground beetle species that represent common generalist predators of north-west European arable agriculture. We investigated two mechanisms predicted to be key drivers of trophic interactions in natural communities: predator:prey body size ratio and multiple predator effects. Our results show regularities in foraging patterns characteristic of similarly sized predators. Ground beetle attack rates increased and handling times decreased as the predator:prey body-mass ratio rose. Multiple predator effects on total prey consumption rates were sensitive to the identity of the interacting species but not prey density. The extent of interspecific interactions may be a result of differences in body mass between competing beetle species. Overall these results add to the growing evidence for the importance of size in determining trophic interactions and suggest that body mass could offer a focus on which to base the management of natural enemy assemblages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different earthworm species have different tolerances of acid soil conditions, and the application of lime to upland grassland to improve the grazing quality may therefore alter the size and diversity of the earthworm community. Altering soil properties may also affect the chemical characteristics of organic C in earthworm casts. We surveyed the earthworm community of an upland grassland in southern Scotland at the outset of annual lime applications, and after 3 years, and used C-13 nuclear magnetic resonance (NMR) spectroscopy to assess the distribution of C between different functional groups in the organic matter. In addition, soil was incubated for 8 weeks with several earthworm species in the presence or absence of lime, and the earthworm casts were subsequently analysed by C-13 NMR spectroscopy. Liming did not significantly affect earthworm abundance or species diversity, but it did affect the chemical composition of the casts. Casts from earthworms incubated in unlimed soil had greater ratios of alkyl-C to O-alkyl-C, indicative of more decomposed, recalcitrant C, and spectra from litter-feeding species had the greatest intensities of O-alkyl-C signals. In limed soil, the largest O-alkyl-C signal intensities were not restricted to litter-feeding species, indicating an increase in the quality of organic matter ingested by geophagous species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent contributions by geographers on the relationships between states and citizens have documented the rise of rolled-out neoliberalism. Development agendas are, it is argued, increasingly dominated by the principles of market-driven reforms, social inequality, and a drive towards enhancing the economic competitiveness of the supply side of the economy. However, at the same time, a parallel set of discourses has emerged in the development literature which argues that it is principles of sustainable development that have, in practice, become dominant. The emphasis is, instead, on democratic empowerment, environmental conservation, and social justice. This paper examines the relationships between these ostensibly very different interpretations of contemporary development with an assessment of one of the Labour government's most ambitious planning agendas-the publication in February 2003 of the document Sustainable Communities: Building for the Future. The proposals are promoted as a "step change" in the planning system with a new emphasis on tackling shortages of housing in the South East and reviving the economy of the Thames Gateway area. The paper assesses the different ways in which such programmes can be interpreted and argues that contemporary development practices in countries such as Britain are constituted by a hybridity of approaches and rationalities and cannot be reduced to simple characterisations of rolled-out neoliberalism or sustainable development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study quantifies the influence of Poa alpina on the soil microbial community in primary succession of alpine ecosystems, and whether these effects are controlled by the successional stage. Four successional sites representative of four stages of grassland development (initial, 4 years (non-vegetated); pioneer, 20 years; transition, 75 years; mature, 9500 years old) on the Rotmoos glacier foreland, Austria, were sampled. The size, composition and activity of the microbial community in the rhizosphere and bulk soil were characterized using the chloroform-fumigation extraction procedure, phospholipid fatty acid (PLFA) analysis and measurements of the enzymes beta-glucosidase, beta-xylosidase, N-acetyl-beta-glucosaminidase, leucine aminopeptidase, acid phosphatase and sulfatase. The interplay between the host plant and the successional stage was quantified using principal component (PCA) and multidimensional scaling analyses. Correlation analyses were applied to evaluate the relationship between soil factors (C-org, N-t, C/N ratio, pH, ammonium, phosphorus, potassium) and microbial properties in the bulk soil. In the pioneer stage microbial colonization of the rhizosphere of P. alpina was dependent on the reservoir of microbial species in the bulk soil. As a consequence, the rhizosphere and bulk soil were similar in microbial biomass (ninhydrin-reactive nitrogen (NHR-N)), community composition (PLFA), and enzyme activity. In the transition and mature grassland stage, more benign soil conditions stimulated microbial growth (NHR-N, total amount of PLFA, bacterial PLFA, Gram-positive bacteria, Gram-negative bacteria), and microbial diversity (Shannon index H) in the rhizosphere either directly or indirectly through enhanced carbon allocation. In the same period, the rhizosphere microflora shifted from a G(-) to a more G(+), and from a fungal to a more bacteria-dominated community. Rhizosphere beta-xylosidase, N-acetyl-beta-glucosaminidase, and sulfatase activity peaked in the mature grassland soil, whereas rhizosphere leucine aminopeptidase, beta-glucosidase, and phosphatase activity were highest in the transition stage, probably because of enhanced carbon and nutrient allocation into the rhizosphere due to better growth conditions. Soil organic matter appeared to be the most important driver of microbial colonization in the bulk soil. The decrease in soil pH and soil C/N ratio mediated the shifts in the soil microbial community composition (bacPLFA, bacPLFA/fungPLFA, G(-), G(+)/G(-)). The activities of beta-glucosidase, beta-xylosidase and phosphatase were related to soil ammonium and phosphorus, indicating that higher decomposition rates enhanced the nutrient availability in the bulk soil. We conclude that the major determinants of the microllora vary along the successional gradient: in the pioneer stage the rhizosphere microflora was primarily determined by the harsh soil environment; under more favourable environmental conditions, however, the host plant selected for a specific microbial community that was related to the dynamic interplay between soil properties and carbon supply. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cybersecurity is a complex challenge that has emerged alongside the evolving global socio-technical environment of social networks that feature connectivity across time and space in ways unimaginable even a decade ago. This paper reports on the preliminary findings of a NATO funded project that investigates the nature of innovation in open collaborative communities and its implications for cyber security. In this paper, the authors describe the framing of relevant issues, the articulation of the research questions, and the derivation of a conceptual framework based on open collaborative innovation that has emerged from preliminary field research in Russia and the UK.