5 resultados para Base release

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of carbamate functionalized 1,4-disubstituted triazoles featuring a base sensitive trigger residue, plus a model aromatic amine reporter group, were prepared via copper(I) catalysed azide–alkyne cycloaddition and evaluated for their self-immolative characteristics. This study revealed a clear structure–reactivity relationship, via Hammett analysis, between the structure of the 1,4-disubstituted triazole and the rate of self-immolative release of the amine reporter group, thus demonstrating that under basic conditions this type of triazole derivative has the potential to be employed in a range of chemical release systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elemental composition of residues of maize (Zea mays), sorghum (S. bicolor), groundnuts (Arachis hypogea), soya beans (Glycine max), leucaena (L. leucocephala), gliricidia (G. sepium), and sesbania (S. sesban) was determined as a basis for examining their alkalinity when incorporated into an acidic Zambian Ferralsol. Potential (ash) alkalinity, available alkalinity by titration to pH 4 and soluble alkalinity (16 It water extract titrated to pH 4) were measured. Potential alkalinity ranged from 3 73 (maize) to 1336 (groundnuts) mmol kg(-1) and was equivalent to the excess of their cation charge over inorganic anion charge. Available alkalinity was about half the potential alkalinity. Cations associated with organic anions are the source of alkalinity. About two thirds of the available alkalinity is soluble. Residue buffer curves were determined by titration with H2SO4 to pH 4. Soil buffer capacity measured by addition of NaOH was 12.9 mmol kg(-1) pH(-1). Soil and residue (10 g:0.25 g) were shaken in solution for 24 h and suspension pH values measured. Soil pH increased from 4.3 to between 4.6 (maize) and 5.2 (soyabean) and the amounts of acidity neutralized (calculated from the rise in pH and the soil buffer capacity) were between 3.9 and 11.5 mmol kg(-1), respectively. The apparent base contributions by the residues (calculated from the buffer curves and the fall in pH) ranged between 105 and 350 mmol kg(-1) of residue, equivalent to 2.6 and 8.8 mmol kg(-1) of soil, respectively. Therefore, in contact with soil acidity, more alkalinity becomes available than when in contact with H2SO4 solution. Available alkalinity (to pH 4) would be more than adequate to supply that which reacts with soil but soluble alkalinity would not. It was concluded that soil Al is able to displace cations associated with organic anions in the residues which are not displaced by H+, or that residue decomposition may have begun in the soil suspension releasing some of the non-available alkalinity. Soil and four of the residues were incubated for 100 days and changes in pH, NH4+ and NO3- concentrations measured. An acidity budget equated neutralized soil acidity with residue alkalinity and base or acid produced by N transformations. Most of the potential alkalinity of soyabean and leucaena had reacted after 14 days, but this only occurred after 100 days for gliricidia, and for maize only the available alkalinity reacted. For gliricidia and leucaena, residue alkalinity was primarily used to react with acidity produced by nitrification. Thus, the ability of residues to ameliorate acidity depends not only on their available and potential alkalinity but also on their potential to release mineral N. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long-term monitoring data from eastern North America and Europe indicate a link between increased dissolved organic carbon (DOC) concentrations in surface waters over the last two decades and decreased atmospheric pollutant and marine sulphur (S) deposition. The hypothesis is that decreased acidity and ionic strength associated with declining S deposition has increased the solubility of DOC. However, the sign and magnitude of DOC trends have varied between sites, and in some cases at sites where S deposition has declined, no significant increase in DOC has been observed, creating uncertainty about the causal mechanisms driving the observed trends. In this paper, we demonstrate chemical regulation of DOC release from organic soils in batch experiments caused by changes in acidity and conductivity (measured as a proxy for ionic strength) associated with controlled SO42− additions. DOC release from the top 10 cm of the O-horizon of organo-mineral soils and peats decreased by 21–60% in response to additions of 0–437 µeq SO42− l−1 sulphuric acid (H2SO4) and neutral sea-salt solutions (containing Na+, Mg2+, Cl−, SO42−) over a 20-hour extraction period. A significant decrease in the proportion of the acid-sensitive coloured aromatic humic acids (measured by specific ultra-violet absorbance (SUVA) at 254 nm) was also found with increasing acidity (P < 0.05) in most, but not all, soils, confirming that DOC quality, as well as quantity, changed with SO42− additions. DOC release appeared to be more sensitive to increased acidity than to increased conductivity. By comparing the change in DOC release with bulk soil properties, we found that DOC release from the O-horizon of organo-mineral soils and semi-confined peats, which contained greater exchangeable aluminium (Al) and had lower base saturation (BS), were more sensitive to SO42− additions than DOC release from blanket peats with low concentrations of exchangeable Al and greater BS. Therefore, variation in soil type and acid/base status between sites may partly explain the difference in the magnitude of DOC changes seen at different sites where declines in S deposition have been similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) in acid-sensitive upland waters is dominated by allochthonous inputs from organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH-related retention of DOC in O horizon soils was influenced by acid-base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 μeq l−1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH-DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 μeq l−1), with the greatest decreases occurring in soils with very small % base saturation (BS, <3%) and/or large capacity for sulphate (SO42−) retention (up to 35% of added SO42−). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid-base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However,superimposed on this is the capacity of mineral soils to sorb DOC and SO42−, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42−.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g−1) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g−1) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.