8 resultados para Bascom family (Thomas Bascom, d. 1682)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre- versus post-1980) in local bee diversity in both countries; however, divergent trends were observed in hoverflies. Depending on the assemblage and location, pollinator declines were most frequent in habitat and flower specialists, in univoltine species, and/or in nonmigrants. In conjunction with this evidence, outcrossing plant species that are reliant on the declining pollinators have themselves declined relative to other plant species. Taken together, these findings strongly suggest a causal connection between local extinctions of functionally linked plant and pollinator species.
Resumo:
We investigated the condensation of calf thymus DNA by amphiphilic polystyrene(m)-b-poly(l-lysine)(n) block copolymers (PSm-b- PLys(n), m, n = degree of polymerization), using small-angle X-ray scattering, polarized optical microscopy and laser scanning confocal microscopy. Microscopy studies showed that the DNA condenses in the form of fibrillar precipitates, with an irregular structure, due to electrostatic interactions between PLys and DNA. This is not modified by the presence of hydrophobic PS block. Scattering experiments show that the structure of the polyplexes corresponds to a local order of DNA rods which becomes more compact upon increasing n. It can be concluded that for DNA/ PSm-b- PLys(n) polyplexes, the balance between the PLys block length and the excess charge in the system plays an essential role in the formation of a liquid crystalline phase.
Resumo:
Climate change is leading to the development of land-based mitigation and adaptation strategies that are likely to have substantial impacts on global biodiversity. Of these, approaches to maintain carbon within existing natural ecosystems could have particularly large benefits for biodiversity. However, the geographical distributions of terrestrial carbon stocks and biodiversity differ. Using conservation planning analyses for the New World and Britain, we conclude that a carbon-only strategy would not be effective at conserving biodiversity, as have previous studies. Nonetheless, we find that a combined carbon-biodiversity strategy could simultaneously protect 90% of carbon stocks (relative to a carbon-only conservation strategy) and > 90% of the biodiversity (relative to a biodiversity-only strategy) in both regions. This combined approach encapsulates the principle of complementarity, whereby locations that contain different sets of species are prioritised, and hence disproportionately safeguard localised species that are not protected effectively by carbon-only strategies. It is efficient because localised species are concentrated into small parts of the terrestrial land surface, whereas carbon is somewhat more evenly distributed; and carbon stocks protected in one location are equivalent to those protected elsewhere. Efficient compromises can only be achieved when biodiversity and carbon are incorporated together within a spatial planning process.
Resumo:
The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized.
Resumo:
Many species are extending their leading-edge (cool) range margins polewards in response to recent climate change. In the present study, we investigated range margin changes at the northern (cool) range margins of 1573 southerly-distributed species from 21 animal groups in Great Britain over the past four decades of climate change, updating previous work. Depending on data availability, range margin changes were examined over two time intervals during the past four decades. For four groups (birds, butterflies, macromoths, and dragonflies and damselflies), there were sufficient data available to examine range margin changes over both time intervals. We found that most taxa shifted their northern range margins polewards and this finding was not greatly influenced by changes in recorder effort. The mean northwards range margin change in the first time interval was 23 km per decade (N = 13 taxonomic groups) and, in the second interval, was 18 km per decade (N = 16 taxonomic groups) during periods when the British climate warmed by 0.21 and 0.28 °C per decade, respectively. For the four taxa examined over both intervals, there was evidence for higher rate of range margin change in the more recent time interval in the two Lepidoptera groups. Our analyses confirm a continued range margin shift polewards in a wide range of taxonomic groups.
Resumo:
A cornerstone of conservation is the designation and management of protected areas (PAs): locations often under conservation management containing species of conservation concern, where some development and other detrimental influences are prevented or mitigated. However, the value of PAs for conserving biodiversity in the long term has been questioned given that species are changing their distributions in response to climatic change. There is a concern that PAs may become climatically unsuitable for those species that they were designated to protect, and may not be located appropriately to receive newly-colonizing species for which the climate is improving. In the present study, we analyze fine-scale distribution data from detailed resurveys of seven butterfly and 11 bird species in Great Britain aiming to examine any effect of PA designation in preventing extinctions and promoting colonizations. We found a positive effect of PA designation on species' persistence at trailing-edge warm range margins, although with a decreased magnitude at higher latitudes and altitudes. In addition, colonizations by range expanding species were more likely to occur on PAs even after altitude and latitude were taken into account. PAs will therefore remain an important strategy for conservation. The potential for PA management to mitigate the effects of climatic change for retracting species deserves further investigation.
Resumo:
1. Species’ distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970–2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes. 2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa. 3. Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased. 4. Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation. 5. Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation. 6. Not all species of a given type behaved similarly, suggesting that complex interactions between species’ attributes and different combinations of environmental drivers determine frequency of occurrence changes. 7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges.
Resumo:
The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.