7 resultados para Barrow, Isaac, 1630-1677
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper outlines the results of a programme of radiocarbon dating and Bayesian modelling relating to an Early Bronze Age barrow cemetery at Over, Cambridgeshire. In total, 43 dates were obtained, enabling the first high-resolution independent chronology (relating to both burial and architectural events) to be constructed for a site of this kind. The results suggest that the three main turf-mound barrows were probably constructed and used successively rather than simultaneously, that the shift from inhumation to cremation seen on the site was not a straightforward progression, and that the four main ‘types’ of cremation burial in evidence were used throughout the life of the site. Overall, variability in terms of burial practice appears to have been a key feature of the site. The paper also considers the light that the fine-grained chronology developed can shed on recent much wider discussions of memory and time within Early Bronze Age barrows
Resumo:
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50–70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg−1 soil) than the higher levels (500 or 1,000 mg N kg−1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg−1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.