7 resultados para Bard, Alphonse
em CentAUR: Central Archive University of Reading - UK
Resumo:
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal. BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 call kyr BR Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific C-14 reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BR A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace ImCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than ImCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to ImCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine 04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
An examination of the critical reception of the poetry of Robert Burns from his death in 1796 to the end of the nineteenth century. The essay shows how a selective reading of Burns's poems was used to construct and reinforce moral and political arguments, and argues that the identification of the poet as national Bard influenced ideas about Scottish literature generally in the nineteenth century.
Resumo:
Uncertainties in sea-level projections for the 21st century have focused ice sheet modelling efforts to include the processes that are thought to be contributing to the recently observed rapid changes at ice sheet margins. This effort is still in its infancy, however, leaving us unable to make reliable predictions of ice sheet responses to a warming climate if such glacier accelerations were to increase in size and frequency. The geological record, however, has long identified examples of nonlinear ice sheet response to climate forcing (Shackleton NJ, Opdyke ND. 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–239, late Pliocene to latest Pleistocene. Geological Society of America Memoirs145: 449–464; Fairbanks RG. 1989. A 17,000 year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation. Nature342: 637–642; Bard E, Hamelin B, Arnold M, Montaggioni L, Cabioch G, Faure G, Rougerie F. 1996. Sea level record from Tahiti corals and the timing of deglacial meltwater discharge. Nature382: 241–244), thus suggesting an alternative strategy for constraining the rate and magnitude of sea-level change that we might expect by the end of this century. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Marine and terrestrial sediments of the Valanginian age display a distinct positive δ13C excursion, which has recently been interpreted as the expression of an oceanic anoxic episode (OAE) of global importance. Here we evaluate the extent of anaerobic conditions in marine bottom waters and explore the mechanisms involved in changing carbon storage on a global scale during this time interval. We asses redox-sensitive trace-element distributions (RSTE; uranium, vanadium, cobalt, arsenic and molybdenum) and the quality and quantity of preserved organic matter (OM) in representative sections along a shelf-basin transect in the western Tethys, in the Polish Basin and on Shatsky Rise. OM-rich layers corresponding in time to the δ13C shift are generally rare in the Tethyan sections and if present, the layers are not thicker than several centimetres and total organic carbon (TOC) contents do not surpass 1.68 wt..%. Palynological observations and geochemical properties of the preserved OM suggest a mixed marine and terrestrial origin and deposition in an oxic environment. In the Polish Basin, OM-rich layers show evidence for an important continental component. RSTE exhibit no major enrichments during the δ13C excursion in all studied Tethyan sections. RSTE enrichments are, however, observed in the pre-δ13C excursion OM-rich “Barrande” levels of the Vocontian Trough. In addition, all Tethyan sections record higher Mn contents during the δ13C shift, indicating rather well-oxygenated bottom waters in the western Tethys and the presence of anoxic basins elsewhere, such as the restricted basins of the North Atlantic and Weddell Sea. We propose that the Valanginian δ13C shift is the consequence of a combination of increased OM storage in marginal seas and on continents (as a sink of 12C-enriched organic carbon), coupled with the demise of shallow-water carbonate platforms (diminishing the storage capacity of 13C-enriched carbonate carbon). As such the Valanginian provides a more faithful natural analogue to present-day environmental change than most other Mesozoic OAEs, which are characterized by the development of ocean-wide dysaerobic to anaerobic conditions.
Resumo:
Paleoenvironmental and paleoclimatic changes during the Valanginian carbon isotopic excursion (CIE) have been investigated in the western Tethys. For this purpose, bulk-rock and clay mineralogies, as well as phosphorus (P) contents were evaluated in a selection of five sections located in the Vocontian Basin (Angles, SE France; Alvier, E Switzerland; Malleval, E France), and the Lombardian Basin (Capriolo, N Italy; Breggia, S Switzerland). Within the CIE interval, bulk-rock and clay mineralogies are inferred to reflect mostly climate change. The onset of the CIE (Busnardoites campylotoxus ammonite Zone) is characterized by higher detrital index (DI: sum of the detrital minerals divided by calcite contents) values and the presence of kaolinite in their clay-mineral assemblages. In the late Valanginian (from the Saynoceras verrucosum Zone up to the end of the Valanginian), the samples show relatively variable DI and lower values or the absence of kaolinite. The variation in the mineralogical composition is interpreted as reflecting a change from a climate characterized by optimal weathering conditions associated with an increase in terrigenous input on the southern European margin during the CIE towards an overall unstable climate associated with drier conditions in the late Valanginian. This is contrasted by a dissymmetry (proximal vs distal) along the studied transect, the northern Tethyan margin being more sensitive to changes in continental input compared to the distal environments. P accumulation rates (PAR) present similar features. In the Vocontian basin, P content variations are associated with changes in terrigenous influx, whereas in the Lombardian basin (i.e. Capriolo and Breggia), PAR values are less well correlated. This is mainly because the deeper part of the Tethys was less sensitive to changes in continental inputs. The onset of the CIE (top of the B. campylotoxus Zone) records a general increase in PAR suggesting an increase in marine nutrient levels. This is linked to higher continental weathering rates and the enhanced influx of nutrients into the ocean. In the period corresponding to the shift itself, P contents show a dissymmetry between the Vocontian and Lombardian basins (proximal vs distal). For the sections of Malleval, Alvier and Angles, a decrease in P concentrations associated to a decrease in detrital input is observed. In Capriolo and Breggia, PAR show maximum values during the plateau, indicating a more complex interaction between different P sources. The time interval including the top of S. verrucosum Zone up to the end of the Valanginian is characterized by variable PAR values, suggesting variable nutrient influxes. These changes are in agreement with an evolution towards seasonally contrasted conditions in the late Valanginian.