50 resultados para Bacillus thuringiensis.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The intensification of agriculture and the development of synthetic insecticides enabled worldwide grain production to more than double in the last third of the 20th century. However, the heavy dependence and, in some cases, overuse of insecticides has been responsible for negative environmental and ecological impacts across the globe, such as a reduction in biodiversity, insect resistance to pesticides, negative effects on nontarget species (e.g. natural enemies) and the development of secondary pests. The use of recombinant DNA technology to develop genetically engineered (GE) insect resistant crops could mitigate many of the negative side effects of pesticides. One such genetic alteration enables crops to express toxic crystalline (Cry) proteins from the soil bacteria Bacillus thuringiensis (Bt). Despite the widespread adoption of Bt crops, there are still a range of unanswered questions concerning longer term agro-ecosystem interactions. For instance, insect species that are not susceptible to the expressed toxin can develop into secondary pests and cause significant damage to the crop. Here we review the main causes surrounding secondary pest dynamics in Bt crops and the impact of such outbreaks. Regardless of the causes, if non-susceptible secondary pest populations exceed economic thresholds, insecticide spraying could become the immediate solution at farmers’ disposal, and the sustainable use of this genetic modification technology may be in jeopardy. Based on the literature, recommendations for future research are outlined that will help to improve the knowledge of the possible longterm ecological trophic interactions of employing this technology.
Resumo:
Transgenic crops that contain Cry genes from Bacillus thuringiensis (Bt) have been adopted by farmers over the last 17 years. Unlike traditional broad spectrum chemical insecticides, Bt's toxicity spectrum is relatively narrow and selective, which may indirectly benefit secondary insects that may become important pests. The economic damage caused by the rise of secondary pests could offset some or all of the benefits associated with the use of Bt varieties. We develop a bioeconomic model to analyze the interactions between primary and secondary insect populations and the impact of different management options on insecticide use and economic impact over time. Results indicate that some of the benefits associated with the adoption of genetically engineered insect resistant crops may be eroded when taking into account ecological dynamics. It is suggested that secondary pests could easily become key insect pests requiring additional measures - such as insecticide applications or stacked traits – to keep their populations under the economic threshold.
Resumo:
A study of the commercial growing of different varieties of Bacillus thuringiensis (Bt) cotton compares the performance of growing official and unofficial hybrid varieties of Bt cotton and conventional (non-Bt) hybrids in Gujarat by 622 farmers. Results suggest that the official Bt varieties (MECH 12 and MECH 162) significantly outperform the unofficial varieties. However, unofficial, locally produced Bt hybrids can also perform significantly better than non-Bt hybrids, although second generation (F-2) Bt seed appears to have no yield advantage compared to non-Bt hybrids but can save on insecticide use. Although hybrid vigour is reduced, or even lost, with F-2 seed the Bt gene still confers some advantage. The F-2 seed is regarded as 'GM' by the farmers (and is sold as such), even though its yield performance is little better than the non-GM hybrids. The results help to explain why there is so much confusion arising from GM cotton release in India.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
There is much debate about the potential benefits (and costs) of genetically modified (GM) crop technology for developing countries. Studies have been carried out in Argentina, China, Indonesia and most recently India1 to assess the impact of Bacillus thuringiensis (Bt) cotton on farmers in those regions.
Resumo:
Genetically modified (GM) cotton was approved for commercial cultivation in 2002. Hybrids to date have carried the Bt (Bacillus thuringiensis) gene, which confers resistance to Lepidoptera and certain Coleoptera. As well as "official" Bt hybrids (i.e., those that have gone through a formal approval process), there are "unofficial" Bt hybrids produced without such approval. The owners of the official hybrids, Monsanto-Mahyco, claim that the unofficial hybrids are not as good and could even damage the perception of Bt cotton amongst farmers. Anti-GM groups claim that neither type of Bt hybrid provides either yield or economic advantages over non-Bt hybrids. This paper reports the first study of official versus unofficial versus non-Bt hybrids in India (622 farmers in Gujarat State) with the specific aim of comparing one hypothesized ranking in terms of gross margin of (a) official Bt hybrids, (b) unofficial Bt hybrids, and (c) non-Bt hybrids. Results suggest that the official Bt varieties (MECH 12 and MECH 162) significantly outperform the unofficial varieties in terms of gross margin. However, unofficial, locally produced Bt hybrids can also perform significantly better than non-Bt hybrids, although second-generation (F2) Bt seed appears to have no yield advantage compared to non-Bt hybrids but can save on insecticide use. The paper explores some of the implications of this ranking.
Resumo:
The present paper explores the 'farmer' effect in economic advantages often claimed for Bt cotton varieties (those with the endotoxin gene from Bacillus thuringiensis conferring resistance to some insect pests) compared to non-Bt varieties. Critics claim that much of the yield advantage of Bt cotton could be due to the fact that farmers adopting the technology are in a better position to provide inputs and management and so much of any claimed Bt advantage is an artefact rather than reflecting a real advantage of the variety per se. The present paper provides an in-depth analysis of 63 non-adopting and 94 adopting households of Bt cotton in Jalgaon, Maharashtra State, India, spanning the seasons 2002 and 2003. Results suggest that Bt adopters are indeed different from non-adopters in a number of ways. Adopters appear to specialize more on cotton (at least in terms of the land area they devote to the crop), spend more money on irrigation and grow well-performing non-Bt varieties of cotton (Bunny). Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non-Bt plots in both seasons. If only adopters are considered then the gross margin advantage of Bt plots reduces to 1.6 times that of non-Bt plots. This is still a significant advantage and could well explain the popularity of Bt in Maharashtra. However, it is clear that great care needs to be taken with such comparative studies.
Resumo:
The paper explores the impact of insect-resistant Bacillus thuringiensis (Bt) cotton on costs and returns over the first two seasons of its commercial release in three sub-regions of Maharashtra State, India. It is the first such research conducted in India based on farmers' own practices rather than trial plots. Data were collected for a total of 7793 cotton plots in 2002 and 1577 plots in 2003. Results suggest that while the cost of cotton seed was much higher for farmers growing Bt cotton relative to those growing non-Bt cotton, the costs of bollworm spray were much lower. While Bt plots had greater costs (seed plus insecticide) than non-Bt plots, the yields and revenue from Bt plots were much higher than those of non-Bt plots (some 39% and 63% higher in 2002 and 2003, respectively). Overall, the gross margins of Bt plots were some 43% (2002) and 73% (2003) higher than those of non-Bt plots, although there was some variation between the three sub-regions of the state. The results suggest that Bt cotton has provided substantial benefits for farmers in India over the 2 years, but there are questions as to whether these benefits are sustainable. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Genetically modified (GM) crops and sustainable development remain the foci of much media attention, especially given current concerns about a global food crisis. However, whilst the latter is embraced with enthusiasm by almost all groups, GM crops generate very mixed views. Some countries have welcomed GM, but others, notably those in Europe, adopt a cautious stance. This article aims to review the contribution that GM crops can make to agricultural sustainability in the developing world. Following brief reviews of both issues and their linkages, notably the pros and cons of GM cotton as a contributory factor in sustainability, a number of case studies from resourcepoor cotton farmers in Makhathini Flats, South Africa, is presented for a six-year period. Data on expenditure, productivity and income indicate that Bacillus thuringiensis (Bt) cotton is advantageous because it reduces costs, for example, of pesticides, and increases income, and the indications are that those benefits continued over at least the six years covered by the studies. There are repercussions of the additional income in the households; debts are reduced and money is invested in children's education and in the farms. However, in the general GM debate, the results show that GM crops are not miracle products which alleviate poverty at a stroke, but nor is there evidence that they will cause the scale of environmental damage associated with indiscriminate pesticide use. Indeed, for some GM antagonists, perhaps even the majority, such debates are irrelevant – the transfer of genes between species is unnatural and unethical. For them, GM crops will never be acceptable despite the evidence and pressure to increase world food production.
Resumo:
A study of the commercial growing of different varieties of Bacillus thuringiensis (Bt) cotton compares the performance of growing official and unofficial hybrid varieties of Bt cotton and conventional (non-Bt) hybrids in Gujarat by 622 farmers. Results suggest that the official Bt varieties (MECH 12 and MECH 162) significantly outperform the unofficial varieties. However, unofficial, locally produced Bt hybrids can also perform significantly better than non-Bt hybrids, although second generation (F-2) Bt seed appears to have no yield advantage compared to non-Bt hybrids but can save on insecticide use. Although hybrid vigour is reduced, or even lost, with F-2 seed the Bt gene still confers some advantage. The F-2 seed is regarded as 'GM' by the farmers (and is sold as such), even though its yield performance is little better than the non-GM hybrids. The results help to explain why there is so much confusion arising from GM cotton release in India.
Resumo:
In the continuing debate over the impact of genetically modified (GM) crops on farmers of developing countries, it is important to accurately measure magnitudes such as farm-level yield gains from GM crop adoption. Yet most farm-level studies in the literature do not control for farmer self-selection, a potentially important source of bias in such estimates. We use farm-level panel data from Indian cotton farmers to investigate the yield effect of GM insect-resistant cotton. We explicitly take into account the fact that the choice of crop variety is an endogenous variable which might lead to bias from self-selection. A production function is estimated using a fixed-effects model to control for selection bias. Our results show that efficient farmers adopt Bacillus thuringiensis (Bt) cotton at a higher rate than their less efficient peers. This suggests that cross-sectional estimates of the yield effect of Bt cotton, which do not control for self-selection effects, are likely to be biased upwards. However, after controlling for selection bias, we still find that there is a significant positive yield effect from adoption of Bt cotton that more than offsets the additional cost of Bt seed.
Resumo:
The present paper explores the 'farmer' effect in economic advantages often claimed for Bt cotton varieties (those with the endotoxin gene from Bacillus thuringiensis conferring resistance to some insect pests) compared to non-Bt varieties. Critics claim that much of the yield advantage of Bt cotton could be due to the fact that farmers adopting the technology are in a better position to provide inputs and management and so much of any claimed Bt advantage is an artefact rather than reflecting a real advantage of the variety per se. The present paper provides an in-depth analysis of 63 non-adopting and 94 adopting households of Bt cotton in Jalgaon, Maharashtra State, India, spanning the seasons 2002 and 2003. Results suggest that Bt adopters are indeed different from non-adopters in a number of ways. Adopters appear to specialize more on cotton (at least in terms of the land area they devote to the crop), spend more money on irrigation and grow well-performing non-Bt varieties of cotton (Bunny). Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non-Bt plots in both seasons. If only adopters are considered then the gross margin advantage of Bt plots reduces to 1.6 times that of non-Bt plots. This is still a significant advantage and could well explain the popularity of Bt in Maharashtra. However, it is clear that great care needs to be taken with such comparative studies.
Resumo:
The paper explores the impact of insect-resistant Bacillus thuringiensis (Bt) cotton on costs and returns over the first two seasons of its commercial release in three sub-regions of Maharashtra State, India. It is the first such research conducted in India based on farmers' own practices rather than trial plots. Data were collected for a total of 7793 cotton plots in 2002 and 1577 plots in 2003. Results suggest that while the cost of cotton seed was much higher for farmers growing Bt cotton relative to those growing non-Bt cotton, the costs of bollworm spray were much lower. While Bt plots had greater costs (seed plus insecticide) than non-Bt plots, the yields and revenue from Bt plots were much higher than those of non-Bt plots (some 39% and 63% higher in 2002 and 2003, respectively). Overall, the gross margins of Bt plots were some 43% (2002) and 73% (2003) higher than those of non-Bt plots, although there was some variation between the three sub-regions of the state. The results suggest that Bt cotton has provided substantial benefits for farmers in India over the 2 years, but there are questions as to whether these benefits are sustainable. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Critics of genetically modified (GM) crops often contend that their introduction enhances the gap between rich and poor farmers, as the former group are in the best position to afford the expensive seed as well as provide other inputs such as fertilizer and irrigation. The research reported in this paper explores this issue with regard to Bt cotton (cotton with the endotoxtin gene from Bacillus thuringiensis conferring resistance to some insect pests) in Jalgaon, Maharashtra State, India, spanning the 2002 and 2003 seasons. Questionnaire–based survey results from 63 non–adopting and 94 adopting households of Bt cotton were analyzed, spanning 137 Bt cotton plots and 95 non–Bt cotton plots of both Bt adopters and non–adopters. For these households, cotton income accounted for 85 to 88% of total household income, and is thus of vital importance. Results suggest that in 2003 Bt adopting households have significantly more income from cotton than do non–adopting households (Rp 66,872 versus Rp 46,351) but inequality in cotton income, measured with the Gini coefficient (G), was greater amongst non–adopters than adopters. While Bt adopters had greater acreage of cotton in 2003 (9.92 acres versus 7.42 for non–adopters), the respective values of G were comparable. The main reason for the lessening of inequality amongst adopters would appear to be the consistency in the performance of Bt cotton along with the preferred non–Bt cultivar of Bt adopters—Bunny. Taking gross margin as the basis for comparison, Bt plots had 2.5 times the gross margin of non–Bt plots of non–adopters, while the advantage of Bt plots over non–Bt plots of adopters was 1.6 times. Measured in terms of the Gini coefficient of gross margin/acre it was apparent that inequality was lessened with the adoption of Bunny (G = 0.47) and Bt (G = 0.3) relative to all other non–Bt plots (G = 0.63). Hence the issue of equality needs to be seen both in terms of differences between adopters and non–adopters as well as within each of the groups.
Resumo:
This paper describes the method and findings of a survey designed to explore the economic benefits of the adoption of Bacillus thuringiensis (Bt) cotton for smallholder farmers in the Republic of South Africa. The study found reason for cautious optimism in that the Bt variety generally resulted in a per hectare increase in yields and value of output with a reduction in pesticide costs, which outweighed the increase in seed costs to give a substantial increase in gross margins. Thus, these preliminary results suggest that Bt cotton is good for smallholder cotton farmers and the environment.