97 resultados para BULK POLYMERS
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper details the synthesis, characterisation and physical analyses of a series of hydrogen bonded urethane supramolecular polymer systems that are created by a facile one-step synthesis from inexpensive and commercially available starting materials. We report the synthesis and characterisation of a series of low molecular weight bisurethanes (<650 a.m.u.) that exhibit physical properties in the bulk that are characteristic of polyurethane materials possessing far higher molecular weight. The physical characteristics of these low molecular weight bisurethanes were investigated by using temperature-dependent rheological analysis and viscometry and the nature in which these compounds assembled was assessed using IR and NMR spectroscopies. These studies reveal that these simple bisurethanes self-assemble via hydrogen bonding interactions.
Resumo:
The present paper details the synthesis, characterization, and preliminary physical analyses of a series of polyisobutylene derivatives featuring urethane and urea end-groups that enable supramolecular network formation to occur via hydrogen bonding. These polymers are readily accessible from relatively inexpensive and commercially available starting materials using a simple two-step synthetic approach. In the bulk, these supramolecular networks were found to possess thermoreversible and elastomeric characteristics as determined by temperature-dependent rheological analysis. These thermoreversible and elastomeric properties make these supramolecular materials potentially very useful in applications such as adhesives and healable surface coatings.
Resumo:
The organization of non-crystalline polymeric materials at a local level, namely on a spatial scale between a few and 100 a, is still unclear in many respects. The determination of the local structure in terms of the configuration and conformation of the polymer chain and of the packing characteristics of the chain in the bulk material represents a challenging problem. Data from wide-angle diffraction experiments are very difficult to interpret due to the very large amount of information that they carry, that is the large number of correlations present in the diffraction patterns.We describe new approaches that permit a detailed analysis of the complex neutron diffraction patterns characterizing polymer melts and glasses. The coupling of different computer modelling strategies with neutron scattering data over a wide Q range allows the extraction of detailed quantitative information on the structural arrangements of the materials of interest. Proceeding from modelling routes as diverse as force field calculations, single-chain modelling and reverse Monte Carlo, we show the successes and pitfalls of each approach in describing model systems, which illustrate the need to attack the data analysis problem simultaneously from several fronts.
Resumo:
A series of chain liquid crystalline copolymers of 4-cyanophenyl 4′-(6-methacryloyloxyhexyloxy)benzoate and 2-methacryloyloxyethyl β-(1-naphthyl)-propenoate were prepared by free radical polymerization. The corresponding polyacrylates could not be prepared in the same way and an alternative method was used for their preparation involving the synthesis of copolymers of the mesogenic monomer and 2-hydroxyethyl acrylate followed by treatment of the resulting polymers with β-(1-naphthyl)propenoyl chloride. The materials are of interest as photoactive liquid crystalline polymers. The effect of introducing a bulky nonmesogenic group into a liquid crystalline copolymer generally lowers the clearing temperature and raises Tg but also gives rise to contrasting phase behaviour in these two series of polymers. Polymethacrylates which show mesomorphism have sharp transitions and continue to exhibit a highly ordered smectic phase over the bulk of their liquid crystal range. Polyacrylates, on the other hand, exhibit a weakening and broadening-out of their thermal transitions consistent with a lowering of order. These results emphasize the effect of the polymer backbone on phase behaviour.
Resumo:
Novel acid-terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid-catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white-spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans-esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol-functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins.
Resumo:
The linear viscoelastic (LVE) spectrum is one of the primary fingerprints of polymer solutions and melts, carrying information about most relaxation processes in the system. Many single chain theories and models start with predicting the LVE spectrum to validate their assumptions. However, until now, no reliable linear stress relaxation data were available from simulations of multichain systems. In this work, we propose a new efficient way to calculate a wide variety of correlation functions and mean-square displacements during simulations without significant additional CPU cost. Using this method, we calculate stress−stress autocorrelation functions for a simple bead−spring model of polymer melt for a wide range of chain lengths, densities, temperatures, and chain stiffnesses. The obtained stress−stress autocorrelation functions were compared with the single chain slip−spring model in order to obtain entanglement related parameters, such as the plateau modulus or the molecular weight between entanglements. Then, the dependence of the plateau modulus on the packing length is discussed. We have also identified three different contributions to the stress relaxation: bond length relaxation, colloidal and polymeric. Their dependence on the density and the temperature is demonstrated for short unentangled systems without inertia.
Resumo:
We demonstrate that it is possible to link multi-chain molecular dynamics simulations with the tube model using a single chain slip-links model as a bridge. This hierarchical approach allows significant speed up of simulations, permitting us to span the time scales relevant for a comparison with the tube theory. Fitting the mean-square displacement of individual monomers in molecular dynamics simulations with the slip-spring model, we show that it is possible to predict the stress relaxation. Then, we analyze the stress relaxation from slip-spring simulations in the framework of the tube theory. In the absence of constraint release, we establish that the relaxation modulus can be decomposed as the sum of contributions from fast and longitudinal Rouse modes, and tube survival. Finally, we discuss some open questions regarding possible future directions that could be profitable in rendering the tube model quantitative, even for mildly entangled polymers
Resumo:
Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function (the dilute CAPE), the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterization that use the non-entraining parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.
Resumo:
The mechanisms underlying the increase in stress for large mechanical strains of a polymer glass, quantified by the strain-hardening modulus, are still poorly understood. In the present paper we aim to elucidate this matter and present new mechanisms. Molecular-dynamics simulations of two polymers with very different strain-hardening moduli (polycarbonate and polystyrene) have been carried out. Nonaffine displacements occur because of steric hindrances and connectivity constraints. We argue that it is not necessary to introduce the concept of entanglements to understand strain hardening, but that hardening is rather coupled with the increase in the rate of nonaffine particle displacements. This rate increases faster for polycarbonate, which has the higher strain-hardening modulus. Also more nonaffine chain stretching is present for polycarbonate. It is shown that the inner distances of such a nonaffinely deformed chain can be well described by the inner distances of the worm-like chain, but with an effective stiffness length (equal to the Kuhn length for an infinite worm-like chain) that increases during deformation. It originates from the finite extensibility of the chain. In this way the increase in nonaffine particle displacement can be understood as resulting from an increase in the effective stiffness length of the perturbed chain during deformation, so that at larger strains a higher rate of plastic events in terms of nonaffine displacement is necessary, causing in turn the observed strain hardening in polymer glasses.
Resumo:
Hydrogels are defined as three-dimensionally cross-linked networks of hydrophilic polymers capable of imbibing large amounts of water or biological fluids.They can be prepared from any water-soluble polymer or monomer, encompassing a wide range of chemical compositions and bulk physical properties. In the swollen state hydrogels are soft, wet and elastic materials that resemble natural living tissue, which makes them candidates for developing various biomaterials and dosage forms. This article provides a brief introduction to hydrogels, methods of their synthesis and properties