33 resultados para BAYESIAN-ESTIMATION
em CentAUR: Central Archive University of Reading - UK
Resumo:
Threshold Error Correction Models are used to analyse the term structure of interest Rates. The paper develops and uses a generalisation of existing models that encompasses both the Band and Equilibrium threshold models of [Balke and Fomby ((1997) Threshold cointegration. Int Econ Rev 38(3):627–645)] and estimates this model using a Bayesian approach. Evidence is found for threshold effects in pairs of longer rates but not in pairs of short rates. The Band threshold model is supported in preference to the Equilibrium model.
Resumo:
We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.
Resumo:
In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred < 10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.
Resumo:
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods ( BayesMultiState) is available from the authors.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
This study analyzes organic adoption decisions using a rich set of time-to-organic durations collected from avocado small-holders in Michoacán Mexico. We derive robust, intrasample predictions about the profiles of entry and exit within the conventional-versus-organic complex and we explore the sensitivity of these predictions to choice of functional form. The dynamic nature of the sample allows us to make retrospective predictions and we establish, precisely, the profile of organic entry had the respondents been availed optimal amounts of adoption-restraining resources. A fundamental problem in the dynamic adoption literature, hitherto unrecognized, is discussed and consequent extensions are suggested.
Resumo:
We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.
Resumo:
We present a procedure for estimating two quantities defining the spatial externality in discrete-choice commonly referred to as 'the neighbourhood effect'. One quantity, the propensity for neighbours to make the same decision, reflects traditional preoccupations; the other quantity, the magnitude of the neighbourhood itself, is novel. Because both quantities have fundamental bearing on the magnitude of the spatial externality, it is desirable to have a robust algorithm for their estimation. Using recent advances in Bayesian estimation and model comparison, we devise such an algorithm and illustrate its application to a sample of northern-Filipino smallholders. We determine that a significant, positive, neighbourhood effect exists; that, among the 12 geographical units comprising the sample, the neighbourhood spans a three-unit radius; and that policy prescriptions are significantly altered when calculations account for the spatial externality.
Resumo:
Fixed transactions costs that prohibit exchange engender bias in supply analysis due to censoring of the sample observations. The associated bias in conventional regression procedures applied to censored data and the construction of robust methods for mitigating bias have been preoccupations of applied economists since Tobin [Econometrica 26 (1958) 24]. This literature assumes that the true point of censoring in the data is zero and, when this is not the case, imparts a bias to parameter estimates of the censored regression model. We conjecture that this bias can be significant; affirm this from experiments; and suggest techniques for mitigating this bias using Bayesian procedures. The bias-mitigating procedures are based on modifications of the key step that facilitates Bayesian estimation of the censored regression model; are easy to implement; work well in both small and large samples; and lead to significantly improved inference in the censored regression model. These findings are important in light of the widespread use of the zero-censored Tobit regression and we investigate their consequences using data on milk-market participation in the Ethiopian highlands. (C) 2004 Elsevier B.V. All rights reserved.