2 resultados para BACULOVIRUS DNA

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is becoming increasingly apparent that many pathogen populations, including those of insects, show high levels of genotypic variation. Baculoviruses are known to be highly variable, with isolates collected from the same species in different geographical locations frequently showing genetic variation and differences in their biology. More recent Studies at smaller scales have also shown that virus DNA profiles from individual larvae can show polymorphisms within and between populations of the same species. Here, we investigate the genotypic and phenotypic variation of an insect baculovirus infection within a single insect host. Twenty four genotypically distinct nucleopolyhedrovirus (NPV) variants were isolated from an individual pine beauty moth, Panolis flammea, caterpillar by in vivo cloning techniques. No variant appeared to be dominant in the population. The Pafl NPV variants have been mapped using three restriction endonucleases and shown to contain three hypervariable regions containing insertions of 70-750 bp. Comparison of seven of these variants in an alternative host, Mamestra brassicae, demonstrated that the variants differed significantly in both pathogenicity and speed of kill. The generation and maintenance of pathogen heterogeneity are discussed. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recombinant baculoviruses have established themselves as a favoured technology for the high-level expression of recombinant proteins. The construction of recombinant viruses, however, is a time consuming step that restricts consideration of the technology for high throughput developments. Here we use a targeted gene knockout technology to inactivate an essential viral gene that lies adjacent to the locus used for recombination. Viral DNA prepared from the knockout fails to initiate an infection unless rescued by recombination with a baculovirus transfer vector. Modified viral DNA allows 100% recombinant virus formation, obviates the need for further virus purification and offers an efficient means of mass parallel recombinant formation.