2 resultados para Avatars
em CentAUR: Central Archive University of Reading - UK
Resumo:
A desktop tool for replay and analysis of gaze-enhanced multiparty virtual collaborative sessions is described. We linked three CAVE (TM)-like environments, creating a multiparty collaborative virtual space where avatars are animated with 3D gaze as well as head and hand motions in real time. Log files are recorded for subsequent playback and analysis Using the proposed software tool. During replaying the user can rotate the viewpoint and navigate in the simulated 3D scene. The playback mechanism relies on multiple distributed log files captured at every site. This structure enables an observer to experience latencies of movement and information transfer for every site as this is important fir conversation analysis. Playback uses an event-replay algorithm, modified to allow fast traversal of the scene by selective rendering of nodes, and to simulate fast random access. The tool's is analysis module can show each participant's 3D gaze points and areas where gaze has been concentrated.
Resumo:
For efficient collaboration between participants, eye gaze is seen as being critical for interaction. Video conferencing either does not attempt to support eye gaze (e.g. AcessGrid) or only approximates it in round table conditions (e.g. life size telepresence). Immersive collaborative virtual environments represent remote participants through avatars that follow their tracked movements. By additionally tracking people's eyes and representing their movement on their avatars, the line of gaze can be faithfully reproduced, as opposed to approximated. This paper presents the results of initial work that tested if the focus of gaze could be more accurately gauged if tracked eye movement was added to that of the head of an avatar observed in an immersive VE. An experiment was conducted to assess the difference between user's abilities to judge what objects an avatar is looking at with only head movements being displayed, while the eyes remained static, and with eye gaze and head movement information being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects correctly identifying what a person is looking at in an immersive virtual environment. This is followed by a description of the work that is now being undertaken following the positive results from the experiment. We discuss the integration of an eye tracker more suitable for immersive mobile use and the software and techniques that were developed to integrate the user's real-world eye movements into calibrated eye gaze in an immersive virtual world. This is to be used in the creation of an immersive collaborative virtual environment supporting eye gaze and its ongoing experiments. Copyright (C) 2009 John Wiley & Sons, Ltd.