15 resultados para Autosomal dominant polycystic kidney disease

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salmonid proliferative kidney disease (PKD) is caused by the myxozoan Tetracapsuloides bryosalmonae. Given the serious and apparently growing impact of PKD on farmed and wild salmonids, we undertook a phylogeographic study to gain insights into the history of genealogical lineages of T. bryosalmonae in Europe and North America, and to determine if the global expansion of rainbow trout farming has spread the disease. Phylogenetic analyses of internal transcribed spacer 1 sequences revealed a clade composed of all North American sequences plus a subset of Italian and French sequences. High genetic diversity in North America and the absence of genotypes diagnostic of the North American clade in the rest of Europe imply that southern Europe was colonized by immigration from North America; however, sequence divergence suggests that this colonization substantially pre-dated fisheries activities. Furthermore, the lack of southern European lineages in the rest of Europe, despite widespread rainbow trout farming, indicates that T. bryosalmonae is not transported through fisheries activities. This result strikingly contrasts with the commonness of fisheries-related introductions of other pathogens and parasites and indicates that fishes may be dead-end hosts. Our results also demonstrate that European strains of T. bryosalmonae infect and induce PKD in rainbow trout introduced to Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laboratory-reared colonies of the bryozoans Fredericella sultana and Plumatella fungosa were placed upstream of 2 fish farms endemic for salmonid proliferative kidney disease (PKD) to assess rates of infection of bryozoans by Tetra caps uloides bryosalmonae, the causative agent of PKD. Colonies were deployed in the field for 8 trial periods of 2 wk each throughout the summer of 2001. Following each trial, bryozoan colonies were maintained in laboratory culture for 28 d and were regularly monitored for infection by searching for sac stages of T bryosalmonae. Infections were never identified by observations of sac stages, however positive PCR results and sequencing of cultured material confirmed that cryptic infections were present in colonies of both species deployed at one site. The possibility that PCR results reflected contamination of surfaces of bryozoans can be excluded, given the short period of spore viability of T bryosalmonae. Highest rates of infection occurred when 4 of 23 colonies of F sultana and 1 of 12 colonies of P. fungosa were infected during the period 10 to 24 July. No infections were detected from mid-August to late October at this site. None of the colonies at the other site became infected throughout the period of study. Our data provide the first estimates of infection rates of bryozoans by T bryosalmonae. Additionally, they provide evidence that a cryptic stage can be maintained within bryozoan hosts for a period of 4 to 6 wk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines. No significant alteration in gene expression was found in these systems following correction for multiple testing. These data suggest that any alterations in basal gene expression in fibroblasts or cell lines containing mutations in LRRK2 are likely to be quantitatively small. This work suggests that LRRK2 is unlikely to play a direct role in modulation of gene expression, although it remains possible that this protein can influence mRNA expression under pathogenic cicumstances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disease involving progressive motor, cognitive and behavioural decline, leading to death approximately 20 years after motor onset. The disease is characterised pathologically by an early and progressive striatal neuronal cell loss and atrophy, which has provided the rationale for first clinical trials of neural repair using fetal striatal cell transplantation. Between 2000 and 2003, the 'NEST-UK' consortium carried out bilateral striatal transplants of human fetal striatal tissue in five HD patients. This paper describes the long-term follow up over a 3-10-year postoperative period of the patients, grafted and non-grafted, recruited to this cohort using the 'Core assessment program for intracerebral transplantations-HD' assessment protocol. No significant differences were found over time between the patients, grafted and non-grafted, on any subscore of the Unified Huntington's Disease Rating Scale, nor on the Mini Mental State Examination. There was a trend towards a slowing of progression on some timed motor tasks in four of the five patients with transplants, but overall, the trial showed no significant benefit of striatal allografts in comparison with a reference cohort of patients without grafts. Importantly, no significant adverse or placebo effects were seen. Notably, the raclopride positron emission tomography (PET) signal in individuals with transplants, indicated that there was no obvious surviving striatal graft tissue. This study concludes that fetal striatal allografting in HD is safe. While no sustained functional benefit was seen, we conclude that this may relate to the small amount of tissue that was grafted in this safety study compared with other reports of more successful transplants in patients with HD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consis- tently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data high- light the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 20 % of individuals with Parkinson's disease (PD) report a positive family history. Yet, a large portion of causal and disease-modifying variants is still unknown. We used exome sequencing in two affected individuals from a family with late-onset PD to identify 15 potentially causal variants. Segregation analysis and frequency assessment in 862 PD cases and 1,014 ethnically matched controls highlighted variants in EEF1D and LRRK1 as the best candidates. Mutation screening of the coding regions of these genes in 862 cases and 1,014 controls revealed several novel non-synonymous variants in both genes in cases and controls. An in silico multi-model bioinformatics analysis was used to prioritize identified variants in LRRK1 for functional follow- up. However, protein expression, subcellular localization, and cell viability were not affected by the identified variants. Although it has yet to be proven conclusively that variants in LRRK1 are indeed causative of PD, our data strengthen a possible role for LRRK1 in addition to LRRK2 in the genetic underpinnings of PD but, at the same time, highlight the difficulties encountered in the study of rare variants identified by next-generation sequencing in diseases with autosomal dominant or complex patterns of inheritance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease- causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15. Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson’s disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myxozoan, Tetracapsuloides bryosalmonae, exploits freshwater bryozoans as definitive hosts, occurring as cryptic stages in bryozoan colonies during covert infections and as spore-forming sacs during overt infections. Spores released from sacs are infective to salmonid fish, causing the devastating Proliferative Kidney Disease (PKD). We undertook laboratory studies using mesocosm systems running at 10, 14 and 20 degrees C to determine how infection by T bryosalmonae and water temperature influence fitness of one of its most important bryozoan hosts, Fredericella sultana, over a period of 4 weeks. The effects of infection were context-dependent and often undetectable. Covert infections appear to pose very low energetic costs. Thus, we found that growth of covertly infected F. sultana colonies was similar to that of uninfected colonies regardless of temperature, as was the propensity to produce dormant resting stages (statoblasts). Production of statoblasts, however, was associated with decreased growth. Overt infections imposed greater effects on correlates of host fitness by: (i) reducing growth rates at the two higher temperatures: (ii) increasing mortality rates at the highest temperature: (iii) inhibiting statoblast production. Our results indicate that parasitism should have a relatively small effect on host fitness in the field as the negative effects of infection were mainly expressed in environmentally extreme conditions (20 degrees C for 4 weeks). The generally low virulence of T. bryosalmonae is similar to that recently demonstrated for another myxozoan endoparasite of freshwater bryozoans. The unique opportunity for extensive vertical transmission in these colonial invertebrate hosts couples the reproductive interests of host and parasite and may well give rise to the low virulence that characterises these systems. Our study implies that climate change can be expected to exacerbate PKD outbreaks and increase the geographic range of PKD as a result of the combined responses of T. bryosalmonae and its bryozoan hosts to higher temperatures. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Buddenbrockia pluinatellae is an active, muscular, worm-shaped parasite of freshwater bryozoans. This rare and enigmatic animal has been assigned to the Myxozoa on the basis of 18S ribosomal DNA sequences and the presence of malacosporean spores. Here we report cloning of four homologous protein-coding genes from Buddenbrockia worms, the putatively conspecific sac-shaped parasite originally described as Tetracapsula bryozoides and the related sac-shaped parasite Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease in salmonid fish. Analyses are consistent with the hypothesis that Buddenbrockia is indeed a malacosporean myxozoan, but do not provide support for conspecificity with either T. bryozoides or T. bryosalmonae. Implications for the evolution of worm-like body plans in the Myxozoa are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proliferative kidney disease (PKD) is an emerging disease of salmonid fishes. It is provoked by temperature and caused by infective spores of the myxozoan parasite Tetracapsuloides bryosalmonae, which develops in freshwater bryozoans. We investigated the link between PKD and temperature by determining whether temperature influences the proliferation of T bryosalmonae in the bryozoan host Fredericella sultana. Herein we show that increased temperatures drive the proliferation of T bryosalmonae in bryozoans by provoking, accelerating and prolonging the production of infective spores from cryptic stages. Based on these results we predict that PKD outbreaks will increase further in magnitude and severity in wild and farmed salmonids as a result of climate-driven enhanced proliferation in invertebrate hosts, and urge for early implementation of management strategies to reduce future salmonid declines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticoagulant compounds, i.e., derivatives of either 4-hydroxycoumarin (e.g., warfarin, bromadiolone) or indane-1,3-dione (e.g., diphacinone, chlorophacinone), have been in worldwide use as rodenticides for > 50 years. These compounds inhibit blood coagulation by repression of the vitamin K reductase reaction (VKOR). Anticoagulant-resistant rodent populations have been reported from many countries and pose a considerable problem for pest control. Resistance is transmitted as an autosomal dominant trait although, until recently, the basic genetic mutation was unknown. Here, we report on the identification of eight different mutations in the VKORC1 gene in resistant laboratory strains of brown rats and house mice and in wild-caught brown rats from various locations in Europe with five of these mutations affecting only two amino acids (Tyr139Cys, Tyr139Ser, Tyr139Phe and Leu128Gln, Leu128Ser). By recombinant expression of VKORC1 constructs in HEK293 cells we demonstrate that mutations at Tyr139 confer resistance to warlarin at variable degrees while the other mutations, in addition, dramatically reduce VKOR activity. Our data strongly argue for at least seven independent mutation events in brown rats and two in mice. They suggest that mutations in VKORC1 are the genetic basis of anticoagulant resistance in wild populations of rodents, although the mutations alone do not explain all aspects of resistance that have been reported. We hypothesize that these mutations, apart from generating structural changes in the VKORC1 protein, may induce compensatory mechanisms to maintain blood clotting. Our findings provide the basis for a DNA-based field monitoring of anticoagulant resistance in rodents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myxozoans belonging to the recently described class Malacosporea parasitize freshwater bryozoans during at least part of their life cycle. There are at present only two species described in this class: Buddenbrockia plumatellae and Tetracapsuloides bryosalmonae. The former can exist as vermiform and sac-like stages in bryozoan hosts. The latter, in addition to forming sac-like stages in bryozoans, is the causative agent of salmonid proliferative kidney disease (PKD). We undertook molecular and ultrastructural investigations of new malacosporean material to further resolve malacosporean diversity and systematics. Phylogenetic analyses of 18S rDNA sequences provided evidence for two new putative species belonging to the genus Buddenbrockia, revealing a two-fold increase in the diversity of malacosporeans known to date. One new malacosporean is a vermiform parasite infecting the bryozoan Fredericella sultana and the other occurs as sac-like stages in the rare bryozoan, Lophopus crystallinus. Both bryozoans represent new hosts for the genus Buddenbrockia. Our results have established that the malacosporean which infected F. sultana was not a vermiform stage of T. bryosalmonae, although it was collected from a site endemic for PKD. Ultrastructural investigation of new material of B. plumatellae revealed the presence of numerous external tubes associated with developing polar capsules, confirming that the absence of external tubes should no longer be considered as a character of the class Malacosporea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetracapsuloides bryosalmonae is the myxozoan parasite causing proliferative kidney disease (PKD) of salmonid fishes in Europe and North America. The complete life cycle of the parasite remains unknown despite recent discoveries that the stages infectious for fish develop in freshwater bryozoans. During the course of examinations of the urine of rainbow trout (Oncorhynchus mykiss) with or recovering from PKD we identified spores with features similar to those of T. bryosalmonae found in the bryozoan host. Spores found in the urine were subspherical, with a width of 16 mum and height of 14 mum, and possessed two soft valves surrounding two spherical polar capsules (2 mum in diameter) and a single sporoplasm. The absence of hardened valves is a distinguishing characteristic of the newly established class Malacosporea that includes T. bryosalmonae as found in the bryozoan host. The parasite in the urine of rainbow trout possessed only two polar capsules and two valve cells compared to the four polar capsules and four valves observed in the spherical spores of 19 mum in diameter from T. bryosalmonae from the bryozoan host. Despite morphological differences, a relationship between the spores in the urine of rainbow trout and T. bryosalmonae was demonstrated by binding of monoclonal and polyclonal antibodies and DNA probes specific to T. bryosalmonae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T bryosalmonae in fish kidney and released in fish urine; spores of T bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)8–13 expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.