17 resultados para Automobile catalyst
em CentAUR: Central Archive University of Reading - UK
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Catalyst-doped sodium aluminum hydrides have been intensively studied as solid hydrogen carriers for onboard proton-exchange membrane (PEM) fuel cells. Although the importance of catalyst choice in enhancing kinetics for both hydrogen uptake and release of this hydride material has long been recognized, the nature of the active species and the mechanism of catalytic action are unclear. We have shown by inelastic neutron scattering (INS) spectroscopy that a volatile molecular aluminum hydride is formed during the early stage of H-2 re-eneration of a depleted, catalyst-doped sodium aluminum hydride. Computational modeling of the INS spectra suggested the formation of AlH3 and oligomers (AlH3)(n) (Al2H6, Al3H9, and Al4H12 clusters), which are pertinent to the mechanism of hydrogen storage. This paper demonstrates, for the first time, the existence of these volatile species.
Resumo:
This paper is concerned with the effects of adding tin and/or titanium dopant to sodium aluminium hydride for both dehydrogenation and re-hydrogenation reactions during their reversible storage of molecular hydrogen. Temperature programmed decomposition (TPD) measurements show that the dehydrogenation kinetics of NaAlH4 are significantly enhanced upon doping the material with 2 mol% of tributyltin hydride, Sn(Bu)(3)H but the tin catalyst dopant is shown to be inferior than titanium. On the other hand, in this preliminary work, a significant synergetic catalytic effect is clearly revealed in material co-doped with both titanium and tin catalysts which shows the highest reversible rates of dehydrogenation and re-hydrogenation (after their hydrogen depletion). The re-hydrogenation rates of depleted Sn/Ti/NaAlH4 evaluated at both 9.5 and 140 bars hydrogen are also found to be favourable compared to the Ti/NaAlH4, which clearly suggest the importance of the catalyst choice. Basing on these results some mechanistic insights for the catalytic reversible dehydrogenation and re-hydrogenation processes of Sn/Ti/NaAlH4 are therefore made. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A colloidal stable silica-encapsulated magnetic nano-composite of a controlled dimension is, for the first time, employed to carry beta-lactamase via chemical linkage on the silica overlayer: activity study reflects that this new type of immobilisation allows site (enzyme) isolation, accessibility as good as free enzyme and recovery & reusability upon application of magnetic separation.
Resumo:
Synthesis of well-defined nanoparticles has been intensively pursued not only for their fundamental scientific interest, but also for many technological applications. One important development of the nanomaterial is in the area of chemical catalysis. We have now developed a new aqueous-based method for the synthesis of silica encapsulated noble metal nanoparticles in controlled dimensions. Thus, colloid stable silica encapsulated similar to 5 nm platinum nanoparticle is synthesized by a multi-step method. The thickness of the silica coating could be controlled using a different amount of silica precursor. These particles supported on a high surface area alumina are also demonstrated to display a superior hydrogenation activity and stability against metal sintering after thermal activation.
Resumo:
Stabilized water droplet dispersed in supercritical carbon dioxide fluid is demonstrated to be an excellent alternative solvent system to acetic acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions.
Resumo:
New "Pt-in-CeO2" catalyst prepared by microemulsion method is shown to give higher activity for a water-gas shift reaction but with no formation of CH4, the side product from hydrogenation of carbon oxides using a hydrogen-rich reformate as compared to conventional "Pt-on-CeO2" catalysts. Detailed characterization by DRIFT analysis and temperature programmed reduction presented in this work clearly suggest the ceria coverage on Pt inhibits the metal from forming a strong CO adsorption.
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
A water gas shift catalyst comprising metal particles and a metal oxide material is disclosed. The metal particles comprise at least one precious metal and the metal oxide material comprises at least one reducible metal oxide. Substantially all of the metal particles are encapsulated by the metal oxide material such that the catalyst has substantially no activity for methanation. The loading of the metal particles is between 0.5-25wt% based on the weight of the metal oxide material. A process for preparing the catalyst is also disclosed.
Resumo:
The adsorption of NO on Ir{100} has been studied as a function of NO coverage and temperature using temperature programmed reflection absorption infrared spectroscopy (TP-RAIRS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). After saturating the clean (1 x 5)-reconstructed surface with NO at 95 K. two N-2, desorption peaks are observed upon heating. The first N-2 peak at 346 K results from the decomposition of bridge-bonded NO, and the second at 475 K from the decomposition of atop-bonded NO molecules. NO decomposition is proposed to be the rate limiting step for both N-2 desorption states. For high NO coverages on the (1 x 5) surface, the narrow width of the first N-2 desorption peak is indicative of an autocatalytic process for which the parallel formation of N2O appears to be the crucial step. When NO is adsorbed on the metastable unreconstructed (1 x 1) phase of clean Ir{100} N-2 desorption starts at lower temperatures, indicating that this surface modification is more reactive. When a high coverage of oxygen, near 0.5 ML, is pre-adsorbed on the surface, the decomposition of NO is inhibited and mainly desorption of intact NO is observed.
Resumo:
The synthesis and X-ray crystal structure of the MnII,11 complex double salt [Mn2(η1η1µ2-oda)(phen)4(H2O)2][Mn2(η1η1µ2-oda(phen)4(η1-oda)2]·4H2O is reported, together with its catalytic activity towards the disproportionation of H2O2.
Resumo:
The epoxide ring in 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) opens up in its reaction with 4-methylaniline and 4-methoxyaniline in water in equimolar proportion at room temperature without any Lewis acid catalyst to give a monohydrate of 6-(4-methyl-phenylamino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L′·H2O) and 6-(4-methoxyphenyl-amino)-5,6-dihydro-1,10-phenanthrolin-5-ol (L″) respectively. Reaction time decreases from 72 to 14 h in boiling water. But the yields become less. Reaction of L with Zn(ClO4)2·6H2O in methanol in 3:1 molar ratio at room temperature affords white [ZnL3](ClO4)2·H2O. The X-ray crystal structure of the acetonitrile solvate [ZnL3](ClO4)2·MeCN has been determined which shows that the metal has a distorted octahedral N6 coordination sphere. [ZnL3](ClO4)2·2H2O reacts with 4-methylaniline and 4-methoxyaniline in boiling water in 1:3 molar proportion in the absence of any Lewis acid catalyst to produce [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, respectively in 1–4 h time in somewhat low yield. In the 1H NMR spectra of [ZnL′3](ClO4)2·4H2O and [ZnL″3](ClO4)2·H2O, only one sharp methyl signal is observed implicating that only one diastereomer out of the 23 possibilities is formed. The same diastereomers are obtained when L′·H2O and L″ are reacted directly with Zn(ClO4)2·6H2O in tetrahydrofuran at room temperature in very good yields. Reactions of L′·H2O and L″ with Ru(phen)2Cl2·2H2O (phen = 1,10-phenanthroline) in equimolar proportion in methanol–water mixture under refluxing condition lead to the isolation of two diastereomers of [Ru(phen)2L′](ClO4)2·2H2O and [Ru(phen)2L″](ClO4)2·2H2O.
Resumo:
Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.