10 resultados para Automatic voltage regulator. Sliding surface. Salient pole synchronous generator. Power system stabilizer
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper describes a new method for reconstructing 3D surface using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed object's surface is represented a set of triangular facets. We empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points optimally cluster closely on a highly curved part of the surface and are widely, spread on smooth or fat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not undersampled or underrepresented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object.
Resumo:
Many photovoltaic inverter designs make use of a buck based switched mode power supply (SMPS) to produce a rectified sinusoidal waveform. This waveform is then unfolded by a low frequency switching structure to produce a fully sinusoidal waveform. The Cuk SMPS could offer advantages over the buck in such applications. Unfortunately the Cuk converter is considered to be difficult to control using classical methods. Correct closed loop design is essential for stable operation of Cuk converters. Due to these stability issues, Cuk converter based designs often require stiff low bandwidth control loops. In order to achieve this stable closed loop performance, traditional designs invariably need large, unreliable electrolytic capacitors. In this paper, an inverter with a sliding mode control approach is presented which enables the designer to make use of the Cuk converters advantages, while ameliorating control difficulties. This control method allows the selection of passive components based predominantly on ripple and reliability specifications while requiring only one state reference signal. This allows much smaller, more reliable non-electrolytic capacitors to be used. A prototype inverter has been constructed and results obtained which demonstrate the design flexibility of the Cuk topology when coupled with sliding mode control.
Resumo:
This paper describes a new method for reconstructing 3D surface points and a wireframe on the surface of a freeform object using a small number, e.g. 10, of 2D photographic images. The images are taken at different viewing directions by a perspective camera with full prior knowledge of the camera configurations. The reconstructed surface points are frontier points and the wireframe is a network of contour generators. Both of them are reconstructed by pairing apparent contours in the 2D images. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The unique pattern of the reconstructed points and contours may be used in 31) object recognition and measurement without computationally intensive full surface reconstruction. The results are obtained from both computer-generated and real objects. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a method for reconstructing 3D frontier points, contour generators and surfaces of anatomical objects or smooth surfaces from a small number, e. g. 10, of conventional 2D X-ray images. The X-ray images are taken at different viewing directions with full prior knowledge of the X-ray source and sensor configurations. Unlike previous works, we empirically demonstrate that if the viewing directions are uniformly distributed around the object's viewing sphere, then the reconstructed 3D points automatically cluster closely on a highly curved part of the surface and are widely spread on smooth or flat parts. The advantage of this property is that the reconstructed points along a surface or a contour generator are not under-sampled or under-represented because surfaces or contours should be sampled or represented with more densely points where their curvatures are high. The more complex the contour's shape, the greater is the number of points required, but the greater the number of points is automatically generated by the proposed method. Given that the number of viewing directions is fixed and the viewing directions are uniformly distributed, the number and distribution of the reconstructed points depend on the shape or the curvature of the surface regardless of the size of the surface or the size of the object. The technique may be used not only in medicine but also in industrial applications.
Resumo:
The associative sequence learning model proposes that the development of the mirror system depends on the same mechanisms of associative learning that mediate Pavlovian and instrumental conditioning. To test this model, two experiments used the reduction of automatic imitation through incompatible sensorimotor training to assess whether mirror system plasticity is sensitive to contingency (i.e., the extent to which activation of one representation predicts activation of another). In Experiment 1, residual automatic imitation was measured following incompatible training in which the action stimulus was a perfect predictor of the response (contingent) or not at all predictive of the response (noncontingent). A contingency effect was observed: There was less automatic imitation indicative of more learning in the contingent group. Experiment 2 replicated this contingency effect and showed that, as predicted by associative learning theory, it can be abolished by signaling trials in which the response occurs in the absence of an action stimulus. These findings support the view that mirror system development depends on associative learning and indicate that this learning is not purely Hebbian. If this is correct, associative learning theory could be used to explain, predict, and intervene in mirror system development.
Resumo:
The phase shift full bridge (PSFB) converter allows high efficiency power conversion at high frequencies through zero voltage switching (ZVS); the parasitic drain-to-source capacitance of the MOSFET is discharged by a resonant inductance before the switch is gated resulting in near zero turn-on switching losses. Typically, an extra inductance is added to the leakage inductance of a transformer to form the resonant inductance necessary to charge and discharge the parasitic capacitances of the PSFB converter. However, many PSFB models do not consider the effects of the magnetizing inductance or dead-time in selecting the resonant inductance required to achieve ZVS. The choice of resonant inductance is crucial to the ZVS operation of the PSFB converter. Incorrectly sized resonant inductance will not achieve ZVS or will limit the load regulation ability of the converter. This paper presents a unique and accurate equation for calculating the resonant inductance required to achieve ZVS over a wide load range incorporating the effects of the magnetizing inductance and dead-time. The derived equations are validated against PSPICE simulations of a PSFB converter and extensive hardware experimentations.
Resumo:
Adsorption of l-alanine on the Cu{111} single crystal surface was investigated as a model system for interactions between small chiral modifier molecules and close-packed metal surfaces. Synchrotron-based X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy are used to determine the chemical state, bond coordination and out-of-plane orientation of the molecule on the surface. Alanine adsorbs in its anionic form at room temperature, whilst at low temperature the overlayer consists of anionic and zwitterionic molecules. NEXAFS spectra exhibit a strong angular dependence of the π ⁎ resonance associated with the carboxylate group, which allows determining the tilt angle of this group with respect to the surface plane (48° ± 2°) at room temperature. Low-energy electron diffraction (LEED) shows a p(2√13x2√13)R13° superstructure with only one domain, which breaks the mirror symmetry of the substrate and, thus, induces global chirality to the surface. Temperature-programmed XPS (TP-XPS) and temperature-programmed desorption (TPD) experiments indicate that the zwitterionic form converts into the anionic species (alaninate) at 293 K. The latter desorbs/decomposes between 435 K and 445 K.
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
With a rapidly increasing fraction of electricity generation being sourced from wind, extreme wind power generation events such as prolonged periods of low (or high) generation and ramps in generation, are a growing concern for the efficient and secure operation of national power systems. As extreme events occur infrequently, long and reliable meteorological records are required to accurately estimate their characteristics. Recent publications have begun to investigate the use of global meteorological “reanalysis” data sets for power system applications, many of which focus on long-term average statistics such as monthly-mean generation. Here we demonstrate that reanalysis data can also be used to estimate the frequency of relatively short-lived extreme events (including ramping on sub-daily time scales). Verification against 328 surface observation stations across the United Kingdom suggests that near-surface wind variability over spatiotemporal scales greater than around 300 km and 6 h can be faithfully reproduced using reanalysis, with no need for costly dynamical downscaling. A case study is presented in which a state-of-the-art, 33 year reanalysis data set (MERRA, from NASA-GMAO), is used to construct an hourly time series of nationally-aggregated wind power generation in Great Britain (GB), assuming a fixed, modern distribution of wind farms. The resultant generation estimates are highly correlated with recorded data from National Grid in the recent period, both for instantaneous hourly values and for variability over time intervals greater than around 6 h. This 33 year time series is then used to quantify the frequency with which different extreme GB-wide wind power generation events occur, as well as their seasonal and inter-annual variability. Several novel insights into the nature of extreme wind power generation events are described, including (i) that the number of prolonged low or high generation events is well approximated by a Poission-like random process, and (ii) whilst in general there is large seasonal variability, the magnitude of the most extreme ramps is similar in both summer and winter. An up-to-date version of the GB case study data as well as the underlying model are freely available for download from our website: http://www.met.reading.ac.uk/~energymet/data/Cannon2014/.
Resumo:
A comprehensive atmospheric boundary layer (ABL) data set was collected in eight fi eld experiments (two during each season) over open water and sea ice in the Baltic Sea during 1998–2001 with the primary objective to validate the coupled atmospheric- ice-ocean-land surface model BALTIMOS (BALTEX Integrated Model System). Measurements were taken by aircraft, ships and surface stations and cover the mean and turbulent structure of the ABL including turbulent fl uxes, radiation fl uxes, and cloud conditions. Measurement examples of the spatial variability of the ABL over the ice edge zone and of the stable ABL over open water demonstrate the wide range of ABL conditions collected and the strength of the data set which can also be used to validate other regional models.