6 resultados para Automatic identification

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of criminal networks is not a routine exploratory process within the current practice of the law enforcement authorities; rather it is triggered by specific evidence of criminal activity being investigated. A network is identified when a criminal comes to notice and any associates who could also be potentially implicated would need to be identified if only to be eliminated from the enquiries as suspects or witnesses as well as to prevent and/or detect crime. However, an identified network may not be the one causing most harm in a given area.. This paper identifies a methodology to identify all of the criminal networks that are present within a Law Enforcement Area, and, prioritises those that are causing most harm to the community. Each crime is allocated a score based on its crime type and how recently the crime was committed; the network score, which can be used as decision support to help prioritise it for law enforcement purposes, is the sum of the individual crime scores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethyl-cyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear system identification is considered using a generalized kernel regression model. Unlike the standard kernel model, which employs a fixed common variance for all the kernel regressors, each kernel regressor in the generalized kernel model has an individually tuned diagonal covariance matrix that is determined by maximizing the correlation between the training data and the regressor using a repeated guided random search based on boosting optimization. An efficient construction algorithm based on orthogonal forward regression with leave-one-out (LOO) test statistic and local regularization (LR) is then used to select a parsimonious generalized kernel regression model from the resulting full regression matrix. The proposed modeling algorithm is fully automatic and the user is not required to specify any criterion to terminate the construction procedure. Experimental results involving two real data sets demonstrate the effectiveness of the proposed nonlinear system identification approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the rapid development of proteomics, a number of different methods appeared for the basic task of protein identification. We made a simple comparison between a common liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow using an ion trap mass spectrometer and a combined LC-MS and LC-MS/MS method using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and accurate peptide masses. To compare the two methods for protein identification, we grew and extracted proteins from E. coli using established protocols. Cystines were reduced and alkylated, and proteins digested by trypsin. The resulting peptide mixtures were separated by reversed-phase liquid chromatography using a 4 h gradient from 0 to 50% acetonitrile over a C18 reversed-phase column. The LC separation was coupled on-line to either a Bruker Esquire HCT ion trap or a Bruker 7 tesla APEX-Qe Qh-FTICR hybrid mass spectrometer. Data-dependent Qh-FTICR-MS/MS spectra were acquired using the quadrupole mass filter and collisionally induced dissociation into the external hexapole trap. Proteins were in both schemes identified by Mascot MS/MS ion searches and the peptides identified from these proteins in the FTICR MS/MS data were used for automatic internal calibration of the FTICR-MS data, together with ambient polydimethylcyclosiloxane ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model structure comprising a wavelet network and a linear term is proposed for nonlinear system identification. It is shown that under certain conditions wavelets are orthogonal to linear functions and, as a result, the two parts of the model can be identified separately. The linear-wavelet model is compared to a standard wavelet network using data from a simulated fermentation process. The results show that the linear-wavelet model yields a smaller modelling error when compared to a wavelet network using the same number of regressors.