3 resultados para Automatic Generation

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Automatic generation of classification rules has been an increasingly popular technique in commercial applications such as Big Data analytics, rule based expert systems and decision making systems. However, a principal problem that arises with most methods for generation of classification rules is the overfit-ting of training data. When Big Data is dealt with, this may result in the generation of a large number of complex rules. This may not only increase computational cost but also lower the accuracy in predicting further unseen instances. This has led to the necessity of developing pruning methods for the simplification of rules. In addition, classification rules are used further to make predictions after the completion of their generation. As efficiency is concerned, it is expected to find the first rule that fires as soon as possible by searching through a rule set. Thus a suit-able structure is required to represent the rule set effectively. In this chapter, the authors introduce a unified framework for construction of rule based classification systems consisting of three operations on Big Data: rule generation, rule simplification and rule representation. The authors also review some existing methods and techniques used for each of the three operations and highlight their limitations. They introduce some novel methods and techniques developed by them recently. These methods and techniques are also discussed in comparison to existing ones with respect to efficient processing of Big Data.