11 resultados para Auto-Estradas do Atlântico

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A self-tuning controller which automatically assigns weightings to control and set-point following is introduced. This discrete-time single-input single-output controller is based on a generalized minimum-variance control strategy. The automatic on-line selection of weightings is very convenient, especially when the system parameters are unknown or slowly varying with respect to time, which is generally considered to be the type of systems for which self-tuning control is useful. This feature also enables the controller to overcome difficulties with non-minimum phase systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of n-tuple or weightless neural networks as pattern recognition devices has been well documented. They have a significant advantages over more common networks paradigms, such as the multilayer perceptron in that they can be easily implemented in digital hardware using standard random access memories. To date, n-tuple networks have predominantly been used as fast pattern classification devices. The paper describes how n-tuple techniques can be used in the hardware implementation of a general auto-associative network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Market liberalization in emerging-market economies and the entry of multinational firms spur significant changes to the industry/institutional environment faced by domestic firms. Prior studies have described how such changes tend to be disruptive to the relatively backward domestic firms, and negatively affect their performance and survival prospects. In this paper, we study how domestic supplier firms may adapt and continue to perform, as market liberalization progresses, through catch-up strategies aimed at integrating with the industry's global value chain. Drawing on internalization theory and the literatures on upgrading and catch-up processes, learning and relational networks, we hypothesize that, for continued performance, domestic supplier firms need to adapt their strategies from catching up initially through technology licensing/collaborations and joint ventures with multinational enterprises (MNEs) to also developing strong customer relationships with downstream firms (especially MNEs). Further, we propose that successful catch-up through these two strategies lays the foundation for a strategy of knowledge creation during the integration of domestic industry with the global value chain. Our analysis of data from the auto components industry in India during the period 1992–2002, that is, the decade since liberalization began in 1991, offers support for our hypotheses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book looks at how auto-ID has evolved and how it can be used in the construction industry and across projects from the perspective of all the stakeholders, from owners to design consultants, contractors and the supply chain. It could help to improve efficiency, reduce costs, ensure quality, protect the environment, and enhance safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade, several research results have presented formulations for the auto-calibration problem. Most of these have relied on the evaluation of vanishing points to extract the camera parameters. Normally vanishing points are evaluated using pedestrians or the Manhattan World assumption i.e. it is assumed that the scene is necessarily composed of orthogonal planar surfaces. In this work, we present a robust framework for auto-calibration, with improved results and generalisability for real-life situations. This framework is capable of handling problems such as occlusions and the presence of unexpected objects in the scene. In our tests, we compare our formulation with the state-of-the-art in auto-calibration using pedestrians and Manhattan World-based assumptions. This paper reports on the experiments conducted using publicly available datasets; the results have shown that our formulation represents an improvement over the state-of-the-art.

Relevância:

20.00% 20.00%

Publicador: