43 resultados para Associative Memory

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the periodic oscillatory behavior of a class of bidirectional associative memory (BAM) networks with finite distributed delays. A set of criteria are proposed for determining global exponential periodicity of the proposed BAM networks, which assume neither differentiability nor monotonicity of the activation function of each neuron. In addition, our criteria are easily checkable. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of n-tuple or weightless neural networks as pattern recognition devices has been well documented. They have a significant advantages over more common networks paradigms, such as the multilayer perceptron in that they can be easily implemented in digital hardware using standard random access memories. To date, n-tuple networks have predominantly been used as fast pattern classification devices. The paper describes how n-tuple techniques can be used in the hardware implementation of a general auto-associative network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Older adults often experience associative memory impairments but can sometimes remember important information. The current experiments investigate potential age-related similarities and differences associate memory for gains and losses. Younger and older participants were presented with faces and associated dollar amounts, which indicated how much money the person “owed” the participant, and were later given a cued recall test for the dollar amount. Experiment 1 examined face-dollar amount pairs while Experiment 2 included negative dollar amounts to examine both gains and losses. While younger adults recalled more information relative to older adults, both groups were more accurate in recalling the correct value associated with high value faces compared to lower value faces and remembered gist-information about the values. However, negative values (losses) did not have a strong impact on recall among older adults versus younger adults, illustrating important associative memory differences between younger and older adults.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Self-organizing neural networks have been implemented in a wide range of application areas such as speech processing, image processing, optimization and robotics. Recent variations to the basic model proposed by the authors enable it to order state space using a subset of the input vector and to apply a local adaptation procedure that does not rely on a predefined test duration limit. Both these variations have been incorporated into a new feature map architecture that forms an integral part of an Hybrid Learning System (HLS) based on a genetic-based classifier system. Problems are represented within HLS as objects characterized by environmental features. Objects controlled by the system have preset targets set against a subset of their features. The system's objective is to achieve these targets by evolving a behavioural repertoire that efficiently explores and exploits the problem environment. Feature maps encode two types of knowledge within HLS — long-term memory traces of useful regularities within the environment and the classifier performance data calibrated against an object's feature states and targets. Self-organization of these networks constitutes non-genetic-based (experience-driven) learning within HLS. This paper presents a description of the HLS architecture and an analysis of the modified feature map implementing associative memory. Initial results are presented that demonstrate the behaviour of the system on a simple control task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modelling of a nonlinear stochastic dynamical processes from data involves solving the problems of data gathering, preprocessing, model architecture selection, learning or adaptation, parametric evaluation and model validation. For a given model architecture such as associative memory networks, a common problem in non-linear modelling is the problem of "the curse of dimensionality". A series of complementary data based constructive identification schemes, mainly based on but not limited to an operating point dependent fuzzy models, are introduced in this paper with the aim to overcome the curse of dimensionality. These include (i) a mixture of experts algorithm based on a forward constrained regression algorithm; (ii) an inherent parsimonious delaunay input space partition based piecewise local lineal modelling concept; (iii) a neurofuzzy model constructive approach based on forward orthogonal least squares and optimal experimental design and finally (iv) the neurofuzzy model construction algorithm based on basis functions that are Bézier Bernstein polynomial functions and the additive decomposition. Illustrative examples demonstrate their applicability, showing that the final major hurdle in data based modelling has almost been removed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective. The main purpose of the study was to examine whether emotion impairs associative memory for previously seen items in older adults, as previously observed in younger adults. Method. Thirty-two younger adults and 32 older adults participated. The experiment consisted of 2 parts. In Part 1, participants learned picture–object associations for negative and neutral pictures. In Part 2, they learned picture–location associations for negative and neutral pictures; half of these pictures were seen in Part 1 whereas the other half were new. The dependent measure was how many locations of negative versus neutral items in the new versus old categories participants remembered in Part 2. Results. Both groups had more difficulty learning the locations of old negative pictures than of new negative pictures. However, this pattern was not observed for neutral items. Discussion. Despite the fact that older adults showed overall decline in associative memory, the impairing effect of emotion on updating associative memory was similar between younger and older adults.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At its most fundamental, cognition as displayed by biological agents (such as humans) may be said to consist of the manipulation and utilisation of memory. Recent discussions in the field of cognitive robotics have emphasised the role of embodiment and the necessity of a value or motivation for autonomous behaviour. This work proposes a computational architecture – the Memory-Based Cognitive (MBC) architecture – based upon these considerations for the autonomous development of control of a simple mobile robot. This novel architecture will permit the exploration of theoretical issues in cognitive robotics and animal cognition. Furthermore, the biological inspiration of the architecture is anticipated to result in a mobile robot controller which displays adaptive behaviour in unknown environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are at least three distinct time scales that are relevant for the evolution of atmospheric convection. These are the time scale of the forcing mechanism, the time scale governing the response to a steady forcing, and the time scale of the response to variations in the forcing. The last of these, tmem, is associated with convective life cycles, which provide an element of memory in the system. A highly simplified model of convection is introduced, which allows for investigation of the character of convection as a function of the three time scales. For short tmem, the convective response is strongly tied to the forcing as in conventional equilibrium parameterization. For long tmem, the convection responds only to the slowly evolving component of forcing, and any fluctuations in the forcing are essentially suppressed. At intermediate tmem, convection becomes less predictable: conventional equilibrium closure breaks down and current levels of convection modify the subsequent response.

Relevância:

20.00% 20.00%

Publicador: