6 resultados para Ashford

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three triblock copolymers of ethylene oxide and phenyl glycidyl ether, type E(m)G(n)E(m), where G = OCH2-CH(CH2OC6H5) and E = OCH2CH2, were synthesized and characterized by gel-permeation chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and NMR spectroscopy. Their association properties in aqueous solution were investigated by surface tensiometry and light scattering, yielding values of the critical micelle concentration (cmc), the hydrodynamic radius, and the association number. Gel boundaries in concentrated micellar solution were investigated by tube inversion, and for one copolymer, the temperature and frequency dependence of the dynamic moduli served to confirm and extend the phase diagram and to highlight gel properties. Small-angle X-ray scattering was used to investigate gel structure. The overall aim of the work was to define a block copolymer micellar system with better solubilization capacity for poorly soluble aromatic drugs than had been achieved so far by use of block copoly(oxyalkylene)s. Judged by the solubilization of griseofulvin in aqueous solutions of the E(m)G(n)E(m) copolymers, this aim was achieved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.