32 resultados para Artificial Neural Networks, Condition-based Maintenance, Condition Monitoring, Prognostics, Reliability, Suspended Data
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper compares the performance of artificial neural networks (ANNs) with that of the modified Black model in both pricing and hedging Short Sterling options. Using high frequency data, standard and hybrid ANNs are trained to generate option prices. The hybrid ANN is significantly superior to both the modified Black model and the standard ANN in pricing call and put options. Hedge ratios for hedging Short Sterling options positions using Short Sterling futures are produced using the standard and hybrid ANN pricing models, the modified Black model, and also standard and hybrid ANNs trained directly on the hedge ratios. The performance of hedge ratios from ANNs directly trained on actual hedge ratios is significantly superior to those based on a pricing model, and to the modified Black model.
Resumo:
In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.
Resumo:
In this paper we consider the possibility of using an artificial neural network to accurately identify the onset of Parkinson’s Disease tremors in human subjects. Data for the network is obtained by means of deep brain implantation in the human brain. Results presented have been obtained from a practical study (i.e. real not simulated data) but should be regarded as initial trials to be discussed further. It can be seen that a tuned artificial neural network can act as an extremely effective predictor in these circumstances.
Resumo:
The development of an Artificial Neural Network model of UK domestic appliance energy consumption is presented. The model uses diary-style appliance use data and a survey questionnaire collected from 51 households during the summer of 2010. It also incorporates measured energy data and is sensitive to socioeconomic, physical dwelling and temperature variables. A prototype model is constructed in MATLAB using a two layer feed forward network with backpropagation training and has a12:10:24architecture.Model outputs include appliance load profiles which can be applied to the fields of energy planning (micro renewables and smart grids), building simulation tools and energy policy.
Resumo:
In this paper, we will address the endeavors of three disciplines, Psychology, Neuroscience, and Artificial Neural Network (ANN) modeling, in explaining how the mind perceives and attends information. More precisely, we will shed some light on the efforts to understand the allocation of attentional resources to the processing of emotional stimuli. This review aims at informing the three disciplines about converging points of their research and to provide a starting point for discussion.
Resumo:
The existence of endgame databases challenges us to extract higher-grade information and knowledge from their basic data content. Chess players, for example, would like simple and usable endgame theories if such holy grail exists: endgame experts would like to provide such insights and be inspired by computers to do so. Here, we investigate the use of artificial neural networks (NNs) to mine these databases and we report on a first use of NNs on KPK. The results encourage us to suggest further work on chess applications of neural networks and other data-mining techniques.
Resumo:
A multi-layered architecture of self-organizing neural networks is being developed as part of an intelligent alarm processor to analyse a stream of power grid fault messages and provide a suggested diagnosis of the fault location. Feedback concerning the accuracy of the diagnosis is provided by an object-oriented grid simulator which acts as an external supervisor to the learning system. The utilization of artificial neural networks within this environment should result in a powerful generic alarm processor which will not require extensive training by a human expert to produce accurate results.
Resumo:
This paper describes the application of artificial neural networks for automatic tuning of PID controllers using the Model Reference Adaptive Control approach. The effectiveness of the proposed method is shown through a simulated application.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Resumo:
In this paper, we propose to study a class of neural networks with recent-history distributed delays. A sufficient condition is derived for the global exponential periodicity of the proposed neural networks, which has the advantage that it assumes neither the differentiability nor monotonicity of the activation function of each neuron nor the symmetry of the feedback matrix or delayed feedback matrix. Our criterion is shown to be valid by applying it to an illustrative system. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The last decade has seen the re-emergence of artificial neural networks as an alternative to traditional modelling techniques for the control of nonlinear systems. Numerous control schemes have been proposed and have been shown to work in simulations. However, very few analyses have been made of the working of these networks. The authors show that a receding horizon control strategy based on a class of recurrent networks can stabilise nonlinear systems.
Resumo:
This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).