63 resultados para Arsenic tolerance

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation into the phylogenetic variation of plant tolerance and the root and shoot uptake of organic contaminants was undertaken. The aim was to determine if particular families or genera were tolerant of, or accumulated organic pollutants. Data were collected from sixty-nine studies. The variation between experiments was accounted for using a residual maximum likelihood analysis to approximate means for individual taxa. A nested ANOVA was subsequently used to determine differences at a number of differing phylogenetic levels. Significant differences were observed at a number of phylogenetic levels for the tolerance to TPH, the root concentration factor and the shoot concentration factor. There was no correlation between the uptake of organic pollutants and that of heavy metals. The data indicate that plant phylogeny is an important influence on both the plant tolerance and uptake of organic pollutants. If this study can be expanded, such information can be used when designing plantings for phytoremediation or risk reduction during the restoration of contaminated sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg(-1)) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 mu g kg(-1) in the control and 1-2.5 mu g kg(-1) in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05-1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as Solution concentration was reduced to ca. 1 mu gkg(-1) by 0.2-1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 mu g kg(-1) in the 1:1 ochre:soil inix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K= 1.64, n = 0.79, R-2 = 0.76, p <= 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of zinc-phosphorus (Zn-P) interaction on Zn efficiency of six wheat cultivars was studied. The higher dry matter yields were observed when Zn was applied at 5 mu g g(-1) soil than with no Zn application. Phosphorus applications also increased dry matter yield up to the application of 25 mu g P g(-1) soil. The dry matter yield was significantly lower at the P rate of 250 mu g g(-1) soil. At the Zn-deficient level, the Zn-efficient cultivars had higher Zn concentrations in the shoots. Zinc concentrations in all cultivars increased when the P level in the soil was increased from 0 to 25 mu g P g(-1) soil except for the cv. Durati, in which Zn concentrations decreased with increases in P levels. However, when ZnxP interactions were investigated, it was observed that at a Zn-deficient level, Zn concentrations in the plant shoot decreased with each higher level of P, and more severe Zn deficiency was observed at P level of 250 mu g g(-1) soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical pollution of the environment has become a major source of concern. In particular, many studies have investigated the impact of pollution on biota in the environment. Studies on metalliferous contaminated mine spoil wastes have shown that some soil organisms have the capability to become resistant to metal/metalloid toxicity. Earthworms are known to inhabit arsenic-rich metalliferous soils and, due to their intimate contact with the soil, in both the solid and aqueous phases, are likely to accumulate contaminants present in mine spoil. Earthworms that inhabit metalliferous contaminated soils must have developed mechanisms of resistance to the toxins found in these soils. The mechanisms of resistance are not fully understood; they may involve physiological adaptation (acclimation) or be genetic. This review discusses the relationships between earthworms and arsenic-rich mine spoil wastes, looking critically at resistance and possible mechanisms of resistance, in relation to soil edaphic factors and possible trophic transfer routes. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The uptake of arsenic (As) by plants from contaminated soils presents a health hazard that may affect the use of agricultural and former industrial land. Methods for limiting the hazard are desirable. A proposed remediation treatment comprises the precipitation of iron (Fe) oxides in the contaminated soil by adding ferrous sulfate and lime. The effects on As bioavailability were assessed using a range of vegetable crops grown in the field. Four UK locations were used, where soil was contaminated by As from different sources. At the most contaminated site, a clay loam containing a mean of 748 mg As kg(-1) soil, beetroot, calabrese, cauliflower, lettuce, potato, radish and spinach were grown. For all crops except spinach, ferrous sulfate treatment caused a significant reduction in the bioavailability of As in some part of the crop. Application of ferrous sulfate in solution, providing 0.2% Fe oxides in the soil (0-10 cm), reduced As uptake by a mean of 22%. Solid ferrous sulfate was applied to give concentrations of 0.5% and 1% Fe oxides: the 0.5% concentration reduced As uptake by a mean of 32% and the 1% concentration gave no significant additional benefit. On a sandy loam containing 65 mg As kg(-1) soil, there was tentative evidence that ferrous sulfate treatment up to 2% Fe oxides caused a significant reduction in lettuce As, but calabrese did not respond. At the other two sites, the effects of ferrous sulfate treatment were not significant, but the uptake of soil As was low in treated and untreated soils. Differences between sites in the bioavailable fraction of soil As may be related to the soil texture or the source of As. The highest bioavailability was found on the soil which had been contaminated by aerial deposition and had a high sand content. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to determine if there were adverse effects on animal health and performance when a range of ruminant animals species were fed at least 10 times the maximum permitted European Union (EU) selenium (Se) dietary inclusion rate (0.568 mg Se/kg DM) in the form of selenium enriched yeast (SY) derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060. In a series of studies, dairy cows, beef cattle, calves and lambs were offered either a control diet which contained no Se supplement or a treatment diet which contained the same basal feed ingredients plus a SY supplement which increased total dietary Se from 0.15 to 6.25, 0.20 to 6.74, 0.15 to 5.86 and 0.14 to 6.63 mg Se/kg DM, respectively. The inclusion of the SY supplement (P < 0.001) increased whole blood Se concentrations, reaching maximum mean values of 716, 1,505, 1,377, and 724 ng Se/mL for dairy cattle, beef cattle, calves and lambs, respectively. Selenomethionine accounted for 10% of total whole blood Se in control animals whereas the proportion in SY animals ranged between 40 and 75%. Glutathione peroxidase (EC 1.11.1.9) activity was higher (P < 0.05) in SY animals when compared with controls. A range of other biochemical and hematological parameters were assessed, but few differences of biological significance were established between treatments groups. There were no differences between treatment groups within each species with regard to animal physical performance or overall animal health. It was concluded that there were no adverse effects on animal health, performance and voluntary feed intake to the administration of at least ten times the EU maximum, or approximately twenty times the US FDA permitted concentration of dietary Se in the form of SY derived from a specific strain of Saccharomyces cerevisiae CNCM I-3060.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods: Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results: Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions: Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor glucose tolerance may be an under-researched contributory factor in the high (10% to 20%) pre-weaning mortality rate observed in pigs. Insulin resistance commences at around week 12 of gestation in the sow, although there are conflicting reports in the literature about the extent to which insulin resistance is modulated by maternal diet. The aim of the study was to determine the effects of supplementing the maternal diet with different dietary oils during either the first half or the second half of gestation on the glucose tolerance of the sow. Sows were offered the control (C: n = 5) diet as pellets or the C diet plus 10% extra energy (h = 16 per group) derived from either. (i) extra pellets; (ii) palm oil; (iii) olive oil; (iv) sunflower oil; or (v) fish oil. Experimental diets were fed during either the first (G1) or second (G2) half of gestation. A glucose tolerance test (GTT) was conducted on day 108 of gestation by administering 0.5g/kg glucose i.v. Blood samples were taken every 5 to 10 min for 90 min post administration. The change in body weight and backfat thickness during gestation was similar but both type and timing of dietary supplementation influenced litter size and weight. With the exception of the sunflower oil group, supplementing the maternal diet in G1 resulted in larger and heavier litters, particularly in mothers offered palm oil. Basal blood glucose concentrations tended to be more elevated in G1 than G2 groups, whilst plasma insulin concentrations were similar Following a GTT, the adjusted area under the curve was greater in G1 compared to G2 sows, despite no differences in glucose clearance. Maternal diet appeared to influence the relationship between glucose curve characteristics following a GTT and litter outcome. In conclusion, the degree of insulin sensitivity can be altered by both the period during which maternal nutritional supplementation is offered and the fatty acid profile of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Women who were themselves small-for-gestational age (SGA) are at a greater risk of adulthood diseases such as non-insulin-dependent diabetes mellitus (NIDDM), and twice at risk of having an SGA baby themselves. The aim of this study was to examine the intergenerational pig. Low (L) and normal (N) birth weight female piglets were followed throughout their first pregnancy (generation 1 (0)). After they had given birth, the growth and development of the lightest (I) and heaviest (n) female piglet from each litter were monitored until approximately 5 months of age (generation 2 (G2)). A glucose tolerance test (GTT) was conducted on G1 pig at similar to 6 months of age and again during late pregnancy; a GTT was also conducted on G2 pigs at similar to 4 months of age. G1 L offspring exhibited impaired glucose metabolism in later life compared to their G1 N sibling but in the next generation a similar scenario was only observed between I and n offspring born to G1 L mothers. Despite G1 L mothers showing greater glucose intolerance in late pregnancy and a decreased litter size, average piglet birth weight was reduced and there was also a large variation in litter weight; this suggests that they were, to some extent, prioritising their nutrient intake towards themselves rather than promoting their reproductive performance. There were numerous relationships between body shape at birth and glucose curve characteristics in later life, which can, to some extent, be used to predict neonatal outcome. In conclusion, intergenerational effects are partly seen in the pig. It is likely that some of the intergenerational influences may be masked due to the pig being a litter-bearing species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tolerance to high soil and air temperature during the reproductive phase is an important component of adaptation to and and semi-arid cropping environments in groundnut. Between 10 and 22 genotypes were screened for tolerance to high air and soil temperature in controlled environments. To assess tolerance to high soil temperature, 10 genotypes were grown from start of podding to harvest at ambient (28 degrees) and high (38 degreesC) soil temperatures, and crop growth rate (CGR), pod growth rate (PGR) and partitioning (ratio PGR:CGR) measured. To assess tolerance to high air temperature during two key stages-microsporogenesis (3-6 days before flowering, DBF) and flowering, fruit-set was measured in two experiments. In the first experiment, 12 genotypes were exposed to short (3-6 days) episodes of high (38 degreesC) day air temperature at 6 DBF and at flowering. In the second experiment, 22 genotypes were exposed to 40 degreesC day air temperature for I day at 6 DBF, 3 DBF or at flowering. Cellular membrane thermostability (relative injury, RI) was also measured in these 22 genotypes. There was considerable variation among genotypes in response to high temperature, whether assessed by growth rates, fruit-set or RI. Pod weight at high soil temperature was associated with variation in CGR rather than partitioning. Flowering was more sensitive to high air temperature than microsporogenesis. Genotypes tolerant to high air temperature at microsporogenesis were not necessarily tolerant at flowering, and nor was tolerance correlated with RI. Six genotypes (796, 55-437, ICG 1236, ICGV 86021, lCGV 87281 and ICGV 92121) were identified as heat tolerant based on their performance in all tests. These experiments have shown that groundnut genotypes can be easily screened for reproductive tolerance to high air and soil temperature and that several sources of heat tolerance are available in groundnut germplasm. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed set of rice (Oryza sativa L.) is highly sensitive to short episodes of high temperature at anthesis events that are likely to be more frequent in future climates. Breeding for tolerance is therefore an essential component of adaptation to climate variability and change. Experiments were conducted in 2003 and 2004 at optimum (30 degrees C daytime) and high (35 and 38 degrees C) air temperature using parents of some prominent mapping populations (i) to determine whether there were differences in the daily flowering pattern and hence a potential heat avoidance mechanism, and (ii) to identify rice genotypes having true heat tolerance during anthesis, that is, high seed set in spikelets exposed to high temperature. Rice cultivar CG14 (O. glaberrima) reached peak anthesis earlier in the morning (1.5 h after dawn) under both control (30 degrees C) and high (38 degrees C) temperature conditions than O. sativa genotypes (>= 3 h after dawn). Exposure to high temperature (centered on the time of peak anthesis) for 6 h reduced spikelet fertility more than exposure for 2 h, and fertility was lower at 38 degrees C than at 35 degrees C. Genotypic ranking for spikelet fertility at 35 and 38 degrees C was highly correlated in both 2003 and 2004. Fertility was also highly correlated across years, suggesting a consistent and reproducible response of spikelet fertility to temperature. The check cultivar N22 was the most heat tolerant genotype (64-86% fertility at 38 degrees C) and cultivars Azucena and Moroberekan the most susceptible (<8%).