2 resultados para Aromaticity
em CentAUR: Central Archive University of Reading - UK
Resumo:
G3B3 and G2MP2 calculations using Gaussian 03 have been carried out to investigate the protonation preferences for phenylboronic acid. All nine heavy atoms have been protonated in turn. With both methodologies, the two lowest protonation energies are obtained with the proton located either at the ipso carbon atom or at a hydroxyl oxygen atom. Within the G3B3 formalism, the lowest-energy configuration by 4.3 kcal . mol(-1) is found when the proton is located at the ipso carbon, rather than at the electronegative oxygen atom. In the resulting structure, the phenyl ring has lost a significant amount of aromaticity. By contrast, calculations with G2MP2 show that protonation at the hydroxyl oxygen atom is favored by 7.7 kcal . mol(-1). Calculations using the polarizable continuum model (PCM) solvent method also give preference to protonation at the oxygen atom when water is used as the solvent. The preference for protonation at the ipso carbon found by the more accurate G3B3 method is unexpected and its implications in Suzuki coupling are discussed. (C) 2006 Wiley Periodicals, Inc.
Resumo:
Treatment of [Ir(bpa)(cod)](+) complex [1](+) with a strong base (e.g., tBuO(-)) led to unexpected double deprotonation to form the anionic [Ir-(bpa-2H)(cod)](-) species [3](-), via the mono-deprotonated neutral amido complex [Ir(bpa-H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal-chelate ring may explain the favourable double deprotonation. The rhodium analogue [4](-) was prepared in situ. The new species [M(bpa-2H)(cod)](-) (M = Rh, Ir) are best described as two-electron reduced analogues of the cationic imine complexes [M-I(cod)(Py-CH2-N=CH-Py)](+). One-electron oxidation of [3](-) and [4](-) produced the ligand radical complexes [3]* and [4]*. Oxygenation of [3](-) with O-2 gave the neutral carboxamido complex [Ir(cod)(py-CH2-N-CO-py)] via the ligand radical complex [3]* as a detectable intermediate.