3 resultados para Argonne National Laboratory
em CentAUR: Central Archive University of Reading - UK
Resumo:
A full assessment of para-virtualization is important, because without knowledge about the various overheads, users can not understand whether using virtualization is a good idea or not. In this paper we are very interested in assessing the overheads of running various benchmarks on bare-‐metal, as well as on para-‐virtualization. The idea is to see what the overheads of para-‐ virtualization are, as well as looking at the overheads of turning on monitoring and logging. The knowledge from assessing various benchmarks on these different systems will help a range of users understand the use of virtualization systems. In this paper we assess the overheads of using Xen, VMware, KVM and Citrix, see Table 1. These different virtualization systems are used extensively by cloud-‐users. We are using various Netlib1 benchmarks, which have been developed by the University of Tennessee at Knoxville (UTK), and Oak Ridge National Laboratory (ORNL). In order to assess these virtualization systems, we run the benchmarks on bare-‐metal, then on the para-‐virtualization, and finally we turn on monitoring and logging. The later is important as users are interested in Service Level Agreements (SLAs) used by the Cloud providers, and the use of logging is a means of assessing the services bought and used from commercial providers. In this paper we assess the virtualization systems on three different systems. We use the Thamesblue supercomputer, the Hactar cluster and IBM JS20 blade server (see Table 2), which are all servers available at the University of Reading. A functional virtualization system is multi-‐layered and is driven by the privileged components. Virtualization systems can host multiple guest operating systems, which run on its own domain, and the system schedules virtual CPUs and memory within each Virtual Machines (VM) to make the best use of the available resources. The guest-‐operating system schedules each application accordingly. You can deploy virtualization as full virtualization or para-‐virtualization. Full virtualization provides a total abstraction of the underlying physical system and creates a new virtual system, where the guest operating systems can run. No modifications are needed in the guest OS or application, e.g. the guest OS or application is not aware of the virtualized environment and runs normally. Para-‐virualization requires user modification of the guest operating systems, which runs on the virtual machines, e.g. these guest operating systems are aware that they are running on a virtual machine, and provide near-‐native performance. You can deploy both para-‐virtualization and full virtualization across various virtualized systems. Para-‐virtualization is an OS-‐assisted virtualization; where some modifications are made in the guest operating system to enable better performance. In this kind of virtualization, the guest operating system is aware of the fact that it is running on the virtualized hardware and not on the bare hardware. In para-‐virtualization, the device drivers in the guest operating system coordinate the device drivers of host operating system and reduce the performance overheads. The use of para-‐virtualization [0] is intended to avoid the bottleneck associated with slow hardware interrupts that exist when full virtualization is employed. It has revealed [0] that para-‐ virtualization does not impose significant performance overhead in high performance computing, and this in turn this has implications for the use of cloud computing for hosting HPC applications. The “apparent” improvement in virtualization has led us to formulate the hypothesis that certain classes of HPC applications should be able to execute in a cloud environment, with minimal performance degradation. In order to support this hypothesis, first it is necessary to define exactly what is meant by a “class” of application, and secondly it will be necessary to observe application performance, both within a virtual machine and when executing on bare hardware. A further potential complication is associated with the need for Cloud service providers to support Service Level Agreements (SLA), so that system utilisation can be audited.
Resumo:
Once unit-cell dimensions have been determined from a powder diffraction data set and therefore the crystal system is known (e.g. orthorhombic), the method presented by Markvardsen, David, Johnson & Shankland [Acta Cryst. (2001), A57, 47-54] can be used to generate a table ranking the extinction symbols of the given crystal system according to probability. Markvardsen et al. tested a computer program (ExtSym) implementing the method against Pawley refinement outputs generated using the TF12LS program [David, Ibberson & Matthewman (1992). Report RAL-92-032. Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK]. Here, it is shown that ExtSym can be used successfully with many well known powder diffraction analysis packages, namely DASH [David, Shankland, van de Streek, Pidcock, Motherwell & Cole (2006). J. Appl. Cryst. 39, 910-915], FullProf [Rodriguez-Carvajal (1993). Physica B, 192, 55-69], GSAS [Larson & Von Dreele (1994). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA], PRODD [Wright (2004). Z. Kristallogr. 219, 1-11] and TOPAS [Coelho (2003). Bruker AXS GmbH, Karlsruhe, Germany]. In addition, a precise description of the optimal input for ExtSym is given to enable other software packages to interface with ExtSym and to allow the improvement/modification of existing interfacing scripts. ExtSym takes as input the powder data in the form of integrated intensities and error estimates for these intensities. The output returned by ExtSym is demonstrated to be strongly dependent on the accuracy of these error estimates and the reason for this is explained. ExtSym is tested against a wide range of data sets, confirming the algorithm to be very successful at ranking the published extinction symbol as the most likely. (C) 2008 International Union of Crystallography Printed in Singapore - all rights reserved.
Resumo:
A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness have been used for this purpose. The model is based on the CICE sea ice model code developed at the Los Alamos National Laboratory, with some minor modifications, and forcing consists of 40-yr ECMWF Re-Analysis (ERA-40) and Polar Exchange at the Sea Surface (POLES) data. Three parameters are varied in the tuning process: Ca, the air–ice drag coefficient; P*, the ice strength parameter; and α, the broadband albedo of cold bare ice, with the aim being to determine the subset of this three-dimensional parameter space that gives the best simultaneous agreement with observations with this forcing set. It is found that observations of sea ice extent and velocity alone are not sufficient to unambiguously tune the model, and that sea ice thickness measurements are necessary to locate a unique subset of parameter space in which simultaneous agreement is achieved with all three observational datasets.