17 resultados para Arachidonic Acid

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present study was to compare the response of a range of atherogenic and thrombogenic risk markers to two dietary levels of saturated fatty acid (SFA) substitution with monounsaturated fatty acids (MUFA) in students living in a university hall of residence. Although the benefits of such diets have been reported for plasma lipoproteins in high-risk groups, more needs to be known about effects of more modest SFA-MUFA substitutions over the long term and in young healthy adults. In a parallel design over 16 weeks, fifty-one healthy young subjects were randomised to one of two diets: (1) a moderate-MUFA diet in which 16 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 25); (2) a high-MUFA diet in which 33 g dietary SFA/100 g total fatty acids were substituted with MUFA (n 26). All subjects followed an 8-week run-in diet (reference diet), with a fatty acid composition close to the UK average values. There were no differences in plasma lipid responses between the two diets over 16 weeks of the study with similar reductions in total cholesterol (P<0.001) and LDL-cholesterol (P<0.01) in both groups; a small but significant reduction in HDL-cholesterol was also observed in both groups (P<0.01). Platelet responses to ADP (P<0.01) and arachidonic acid (P<0.05) differed with time on the two diets; at 16 weeks, platelet aggregatory response to ADP was significantly lower on the high-MUFA than the moderate-MUFA (P<0.01) diet; ADP responses were also significantly lower within this group at 8 (P< 0.05) and 16 (P< 0.01) weeks compared with baseline. There were no differences in fasting factor VII activity (factors VIII and VIIag), fibrinogen concentration or tissue-type plasminogen activator activity between the diets. There were no differences in postprandial factor VIII responses to a standard meal (area under the curve) between the diets after 16 weeks, but postprandial factor VIII response was lower than on the high-MUFA diet compared with baseline (P<0.01). In conclusion, a high-MUFA diet sustains potentially beneficial effects on platelet aggregation and postprandial activation of factor VII. Moderate or high substitution of MUFA for SFA achieves similar reductions in fasting blood lipids in young healthy subjects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The mechanisms involved in the increased mortality from coronary artery disease in British Indo-Asians are not well understood. Objectives: This study aimed to investigate whether British Indo-Asian Sikhs have higher plasma triacylglycerol concentrations, lower platelet phospholipid levels, and lower dietary intakes of long-chain n-3 polyunsaturated fatty acids (PUFAs) than do age- and weight-matched Europeans and whether moderate dietary fish-oil intake can reverse these differences. Design: A randomized, double-blind, placebo-controlled, parallel, fish-oil intervention study was performed. After a 2-wk run-in period, 44 Europeans and 40 Indo-Asian Sikhs were randomly assigned to receive either 4.0 g fish oil [1.5 g eicosapentaenoic acid (EPA) and 1.0 g docosahexaenoic acid (DHA)] or 4.0 g olive oil (control) daily for 12 wk. Results: At baseline, the Indo-Asians had significantly higher plasma triacylglycerol, small dense LDL, apolipoprotein B, and dietary and platelet phospholipid n-6 PUFA values and significantly lower long-chain n-3 PUFAs (EPA and DHA) than did the Europeans. A significant decrease in plasma triacylglycerol, plasma apolipoprotein B-48, and platelet phospholipid arachidonic acid concentrations and a significant increase in plasma HDL concentrations and platelet phospholipid EPA and DHA levels were observed after fish-oil supplementation. No significant effect of ethnicity on the responses to fish-oil supplementation was observed. Conclusions: Moderate fish-oil supplementation contributes to a reversal of lipid abnormalities and low n-3 PUFA levels in Indo-Asians and should be considered as an important, yet simple, dietary manipulation to reduce CAD risk in Indo-Asians with an atherogenic lipoprotein phenotype.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study has investigated the influence of dietary fatty acid composition on mammary tumour incidence in N-ethyl-N-nitrosourea (ENU)-treated rats and has compared the susceptibility to dietary fatty acid modification of the membrane phospholipids phosphatidyliuositol (PI) and phosphatidylethanolamine (PE) from normal and tumour tissue of rat mammary gland. The incidence of mammary tumours was significantly lower in fish oil- (29%), compared with olive oil- (75%; P < 0.04) but not maize oil- (63%; P < 0.1) fed animals. No differences in PI fatty acid composition were found in normal or tumour tissue between rats fed on maize oil, olive oil or fish oil in diets from weaning. When normal and tumour tissue PI fatty acids were compared, significantly higher amounts of stearic acid (18:O) were found in tumour than normal tissue in rats given olive oil (P < 0.05). A similar trend was found in animals fed on maize oil, although differences between normal and tumour tissue did not reach a level of statistical significance (P < 0.1). In mammary PE, maize oil-fed control animals had significantly higher levels of linoleic acid (18:2n-6) than either olive oil- or fish oil-fed animals (P < 0.05, both cases) and levels of arachidonic acid were also higher in maize oil- compared with fish oil-fed animals (P < 0.05). In tumourbearing animals no differences in PE fatty acid composition were found between the three dietary groups. When normal and tumour tissue PE fatty acids were compared, significantly lower amounts of liuoleic acid (18:2n-6; P < 0.01) and significantly greater amounts of arachidonic acid (20:4n-6; P < 0.05) were found in tumour than normal tissue of rats fed on maize oil. The present study shows that the fatty acid composition of PI from both normal and tumour tissue of the mammary gland is resistant to dietary fatty acid modification. The PE fraction is more susceptible to dietary modification and in this fraction there is evidence of increased conversion of linoleic acid to arachidonic acid in tumour compared with normal tissue. Lower tumour incidence rates in rats given fish oils may in part be due to alteration in prostanoid metabolism secondary to displacement of arachidonic acid by eicosapentaenoic acid, but PE rather than PI would appear to be the most likely locus for diet-induced alteration in prostanoid synthesis in this tissue. Effects of dietary fatty acids other than on the balance of n-6 and n-3 fatty acids, and on prostanoid metabolism, should also be considered. The significance of increased stearic acid content of PI in tumours of olive oil-fed animals and the possible influence of dietary fatty acids on the capacity for stearic acid accumulation requires further study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish oil supplementation during pregnancy alters breast milk composition, but there is little information about the impact of oily fish consumption. We determined whether increased salmon consumption during pregnancy alters breast milk fatty acid composition and immune factors. Women (n = 123) who rarely ate oily fish were randomly assigned to consume their habitual diet or to consume 2 portions of farmed salmon per week from 20 wk of pregnancy until delivery. The salmon provided 3.45 g long-chain (LC) (n-3) PUFA/wk. Breast milk fatty acid composition and immune factors [soluble CD14, transforming growth factor-b (TGFb)1, TGFb2, and secretory IgA] were analyzed at 1, 5, 14, and 28 d postpartum (PP). Breast milk from the salmon group had higher proportions of EPA (80%), docosapentaenoic acid (30%), and DHA (90%) on d 5 PP compared with controls (P < 0.01). The LC (n-6) PUFA:LC (n-3) PUFA ratio was lower for the salmon group on all days of PP sampling (P < 0.004), although individual (n-6) PUFA proportions, including arachidonic acid, did not differ. All breast milk immune factors decreased between d 1 and 28 PP (P < 0.001). Breast milk secretory IgA (sIgA) was lower in the salmon group (d 1–28 PP; P = 0.006). Salmon consumption during pregnancy, at the current recommended intakes, increases the LC (n-3) PUFA concentration of breast milk in early lactation, thus improving the supply of these important fatty acids to the breast-fed neonate. The consequence of the lower breast milk concentration of sIgA in the salmon group is not clear.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Breast milk fatty acid composition may be affected by maternal diet during gestation and lactation. The influence of dietary and breast milk fatty acids on breast milk immune factors is poorly defined. We determined the fatty acid composition and immune factor concentrations of breast milk from women residing in river & lake, coastal, and inland regions of China, which differ in their consumption of lean fish and oily fish. Breast milk samples were collected on days 3 to 5 (colostrum), 14 and 28 post-partum and analysed for soluble CD14 (sCD14), transforming growth factor (TGF)-β1, TGF-β2, secretory immunoglobulin A (sIgA) and fatty acids. The fatty acid composition of breast milk differed between regions and with time post-partum. The concentrations of all four immune factors in breast milk decreased over time, with sCD14, sIgA and TGF-β1 being highest in colostrum in the river & lake region. Breast milk DHA and arachidonic acid (AA) were positively associated, and γ-linolenic acid and EPA negatively associated, with the concentrations of each of the four immune factors. In conclusion, breast milk fatty acids and immune factors differ between regions in China characterised by different patterns of fish consumption and change during the course of lactation. A higher breast milk DHA and AA concentration is associated with higher concentrations of immune factors in breast milk, suggesting a role for these fatty acids in promoting gastrointestinal and immune maturation of the infant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives The administration of unfractionated heparin (UFH) prior to carotid clamping during carotid endarterectomy (CEA) transiently increases the platelet aggregation response to arachidonic acid (AA) despite the use of aspirin. We hypothesized that this phenomenon might be reduced by using low molecular weight heparin (LMWH) resulting in fewer emboli in the early post-operative period. Methods 183 aspirinated patients undergoing CEA were randomised to 5000 IU UFH (n = 91) or 2500 IU LMWH (dalteparin, n = 92) prior to carotid clamping. End-points were: transcranial Doppler (TCD) measurement of embolisation, effect on bleeding and platelet aggregation to AA and adenosine 5′-diphosphate (ADP). Results Patients randomised to UFH had twice the odds of experiencing a higher number of emboli in the first 3 h after CEA, than those randomised to LMWH (p = 0.04). This was not associated with increased bleeding (mean time from flow restoration to operation end: 23 min (UFH) vs. 24 min (LMWH), p = 0.18). Platelet aggregation to AA increased significantly following heparinisation, but was unaffected by heparin type (p = 0.90). The platelets of patients randomised to LMWH exhibited significantly lower aggregation to ADP compared to UFH (p < 0.0001). Conclusions Intravenous LMWH is associated with a significant reduction in post-operative embolisation without increased bleeding. The higher rate of embolisation seen with UFH may be mediated by increased platelet aggregation to ADP, rather than to AA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Eicosanoids are biologically active, oxygenated metabolites of three C20 polyunsaturated fatty acids. They act as signalling molecules within the autocrine or paracrine system in both vertebrates and invertebrates mainly functioning as important mediators in reproduction, the immune system and ion transport. The biosynthesis of eicosanoids has been intensively studied in mammals and it is known that they are synthesised from the fatty acid, arachidonic acid, through either the cyclooxygenase (COX) pathway; the lipoxygenase (LOX) pathway; or the cytochrome P450 epoxygenase pathway. However, little is still known about the synthesis and structure of the pathway in invertebrates. Results: Here, we show transcriptomic evidence from Daphnia magna (Crustacea: Branchiopoda) together with a bioinformatic analysis of the D. pulex genome providing insight on the role of eicosanoids in these crustaceans as well as outlining a putative pathway of eicosanoid biosynthesis. Daphnia appear only to have one copy of the gene encoding the key enzyme COX, and phylogenetic analysis reveals that the predicted protein sequence of Daphnia COX clusters with other invertebrates. There is no current evidence of an epoxygenase pathway in Daphnia; however, LOX products are most certainly synthesised in daphnids. Conclusion: We have outlined the structure of eicosanoid biosynthesis in Daphnia, a key genus in freshwater ecosystems. Improved knowledge of the function and synthesis of eicosanoids in Daphnia and other invertebrates could have important implications for several areas within ecology. This provisional overview of daphnid eicosanoid biosynthesis provides a guide on where to focus future research activities in this area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previously we demonstrated that heparin administration during carotid endarterectomy (CEA) caused a marked, but transient increase in platelet aggregation to arachidonic acid (AA) and adenosine diphosphate (ADP), despite effective platelet cyclo-oxygenase-1 (COX-1) inhibition with aspirin. Here we investigated the metabolism of AA via platelet 12-lipoxygenase (12-LOX) as a possible mediator of the observed transient aspirin resistance, and compared the effects of unfractionated (UFH) and low-molecular-weight (LMWH) heparin. A total of 43 aspirinated patients undergoing CEA were randomised in the trial to 5,000 IU UFH (n=22) or 2,500 IU LMWH (dalteparin, n=21). Platelet aggregation to AA (4x10⁻³) and ADP (3x10⁻⁶) was determined, and the products of the COX-1 and 12-LOX pathways; thromboxane B₂ (TXB₂) and 12-hydroxyeicosatretraenoic acid (12-HETE) were measured in plasma, and in material released from aggregating platelets.Aggregation to AA increased significantly (~10-fold) following heparinisation (p<0.0001), irrespective of heparin type (p=0.33). Significant, but smaller (~2-fold) increases in aggregation to ADP were also seen, which were significantly lower in the platelets of patients randomised to LMWH (p<0.0001). Plasma levels of TxB2 did not rise following heparinisation (p=0.93), but 12-HETE increased significantly in the patients' plasma, and released from platelets stimulated in vitro withADP, with both heparin types (p<0.0001). The magnitude of aggregation to ADP correlated with 12-HETE generation (p=0.03). Heparin administration during CEA generates AA that is metabolised to 12-HETE via the 12-LOX pathway, possibly explaining the phenomenon of transient heparin-induced platelet activation. LMWH has less effect on aggregation and 12-HETE generation than UFH when the platelets are stimulated with ADP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES: Aspirin therapy is usually continued throughout the perioperative period to reduce the risk for thromboembolic stroke and myocardial infarction after carotid endarterectomy (CEA). Aspirin irreversibly binds cyclooxygenase-1, thereby reducing platelet aggregation for the lifetime of each platelet. However, recent research from this unit has shown that aggregation in response to arachidonic acid increases significantly, but transiently, during CEA, which suggests that the anti-platelet effect of aspirin is temporarily reversed. The purpose of the current study was to determine when this phenomenon occurs and to identify the possible mechanisms involved. METHODS: Platelet aggregation was measured in platelet-rich plasma from 41 patients undergoing CEA who were stabilized with 150 mg of aspirin daily. Blood was taken at 8 time points: before anesthesia, after anesthesia, before heparinization, 3 minutes after heparinization, 3 minutes after shunt insertion, 10 minutes after flow restoration, 4 hours postoperatively, and 24 hours postoperatively. Platelet aggregation was also measured at similar times in a group of 18 patients undergoing peripheral angioplasty without general anesthesia. RESULTS: All patient platelets were effectively inhibited by aspirin at the start of the operation. There was a significant intraoperative increase in platelet response to arachidonic acid in both groups of patients, which occurred within 3 minutes of administration of unfractionated heparin. In the CEA group this resulted in a greater than 10-fold increase in mean aggregation, to 5 mmol/L of arachidonic acid (5 mmol/L), rising from 3.9% +/- 2.2% preoperatively to 45.1% +/- 29.3% after administration of heparin ( P <.0001). This increased aggregation persisted into the early postoperative period, but by 24 hours post operation aggregation had returned to near preoperative values. Aggregation in response to other platelet agonists (adenosine diphosphate, thrombin receptor agonist peptide) showed only a small increase at the same time, which could be accounted for by a parallel increase in the level of spontaneous aggregation. CONCLUSION: Administration of heparin significantly increases platelet aggregation in response to arachidonic acid, despite adequate inhibition by aspirin administered preoperatively. This apparent reversal in anti-platelet activity persisted into the immediate early postoperative period, and could explain why a small proportion of patients are at increased risk for acute cardiovascular events after major vascular surgery, despite aspirin therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostaglandins (PG) are bioactive lipids derived from the metabolism of membrane polyunsaturated fatty acids (PUFA), and play important roles in a number of biological processes including cell division, immune responses and wound healing. Cyclooxygenase (COX) is the key enzyme in PG synthesis from arachidonic acid. The hypothesis of the present study was that expression of COX-2 in porcine intestine was dependent on the microbial load and the age of piglets. Piglets were obtained from sows raised either on outdoor free-range farms or on indoor commercial farms, and littermates were divided into three treatments: One group of piglets suckled the sow, a second group was put into an isolator and fed a milk formula, and a third group was put into the isolator fed milk formula and injected with broad spectrum antibiotics. Samples were collected from the 75% level of the small intestine at day 5, 28 and 56 of age. Tissue section from four piglets from each of these six treatment groups was analysed by immunofluorescence for COX-2 and type-IV collagen (basement membrane, defining lamina propria (LP)). Image analysis was used to determine the number of positive pixels expressing LP and epithelial COX-2. COX-2 expressing cells were observed in LP and epithelium in all porcine intestinal samples. When analysing images obtained on day 28, injection of antibiotics seemed to reduce the COX-2 expression in intestinal samples of piglets when compared to other treatments (P=0.053). No significant effect of farm, treatments or age of piglets was observed on COX-2 expressing data when analysing all data of images obtained at day 28 and 56. By double-labelling experiments, COX-2 was found not to be expressed on cell co-expressing CD45, CD16, CD163 or CD2, thus indicating that mucosal leukocytes, including dendritic cells, macrophages and NK cells did not express COX-2. Future research should investigate the role of COX-2 expression in the digestive tract in relation to pig health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

G protein-coupled receptors of nociceptive neurons can sensitize transient receptor potential (TRP) ion channels, which amplify neurogenic inflammation and pain. Protease-activated receptor 2 (PAR(2)), a receptor for inflammatory proteases, is a major mediator of neurogenic inflammation and pain. We investigated the signaling mechanisms by which PAR(2) regulates TRPV4 and determined the importance of tyrosine phosphorylation in this process. Human TRPV4 was expressed in HEK293 cells under control of a tetracycline-inducible promoter, allowing controlled and graded channel expression. In cells lacking TRPV4, the PAR(2) agonist stimulated a transient increase in [Ca(2+)](i). TRPV4 expression led to a markedly sustained increase in [Ca(2+)](i). Removal of extracellular Ca(2+) and treatment with the TRPV4 antagonists Ruthenium Red or HC067047 prevented the sustained response. Inhibitors of phospholipase A(2) and cytochrome P450 epoxygenase attenuated the sustained response, suggesting that PAR(2) generates arachidonic acid-derived lipid mediators, such as 5',6'-EET, that activate TRPV4. Src inhibitor 1 suppressed PAR(2)-induced activation of TRPV4, indicating the importance of tyrosine phosphorylation. The TRPV4 tyrosine mutants Y110F, Y805F, and Y110F/Y805F were expressed normally at the cell surface. However, PAR(2) was unable to activate TRPV4 with the Y110F mutation. TRPV4 antagonism suppressed PAR(2) signaling to primary nociceptive neurons, and TRPV4 deletion attenuated PAR(2)-stimulated neurogenic inflammation. Thus, PAR(2) activation generates a signal that induces sustained activation of TRPV4, which requires a key tyrosine residue (TRPV4-Tyr-110). This mechanism partly mediates the proinflammatory actions of PAR(2).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: We have previously demonstrated that carrying the apolipoprotein (apo) E epsilon 4 (E4+) genotype disrupts omega-3 fatty acids (n − 3 PUFA) metabolism. Here we hypothesise that the postprandial clearance of n − 3 PUFA from the circulation is faster in E4+ compared to non-carriers (E4−). The objective of the study was to investigate the fasted and postprandial fatty acid (FA) profile of triacylglycerol-rich lipoprotein (TRL) fractions: Sf >400 (predominately chylomicron CM), Sf 60 − 400 (VLDL1), and Sf 20 − 60 (VLDL2) according to APOE genotype. Methods: Postprandial TRL fractions were obtained in 11 E4+ (ε3/ε4) and 12 E4− (ε3/ε3) male from the SATgenε study following high saturated fat diet + 3.45 g/d of docosahexaenoic acid (DHA) for 8-wk. Blood samples were taken at fasting and 5-h after consuming a test-meal representative of the dietary intervention. FA were characterized by gas chromatography. Results: At fasting, there was a 2-fold higher ratio of eicosapentaenoic acid (EPA) to arachidonic acid (P = 0.046) as well as a trend towards higher relative% of EPA (P=0.063) in theSf >400 fraction of E4+. Total n − 3 PUFA in the Sf 60 − 400 and Sf 20 − 60 fractions were not APOE genotype dependant. At 5 h, there was a trend towards a time × genotype interaction (P=0.081) for EPA in theSf >400 fraction. When sub-groups were form based on the level of EPA at baseline within the Sf >400 fraction, postprandial EPA (%) was significantly reduced only in the high-EPA group. EPA at baseline significantly predicted the postprandial response in EPA only in E4+ subjects (R2 = 0.816). Conclusion: Despite the DHA supplement contain very low levels of EPA, E4+ subjects with high EPA at fasting potentially have disrupted postprandial n − 3 PUFA metabolism after receiving a high-dose of DHA. Trial registration: Registered at clinicaltrials.gov/show/NCT01544855.