77 resultados para Aqueous colloidal suspensions
em CentAUR: Central Archive University of Reading - UK
Resumo:
The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.
Resumo:
Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.
Resumo:
Recent experiments have demonstrated that block copolymers are capable of stabilizing immiscible homopolymer blends producing bicontinuous microemulsion. The stability of these polymeric alloys requires the copolymer to form flexible, nonattractive monolayers along the homopolymer interfaces. We predict that copolymer polydispersity can substantially and simultaneously improve the monolayers in both of these respects. Furthermore, polydispersity should provide similar improvements in systems, such as colloidal suspensions and polymer/clay composites, that utilize polymer brushes to suppress attractive interactions.
Resumo:
The aim of this study is to investigate the mechanism responsible for the recovery of astaxanthin using Colloidal Gas Aphrons (CGA), which are surfactant stabilised microbubbles. The latter were produced using different surfactant solutions (Cetyl Trimethyl Ammonium Bromide (CTAB)-cationic, Sodium Dodecyl Sulfate (SDS)-anionic, TWEEN 60-non-ionic and mixtures of TWEEN 60-SPAN 80- non-ionic with varying hydrophobicity) at stirring speed 8000 rpm and stirring time 5 min. Experiments were carried out at varying pH and volumetric ratios of astaxanthin to CGA, and with two different astaxanthin standard suspensions: (i) astaxanthin dispersed in aqueous solutions and (ii) astaxanthin dispersed in ethanolic/aqueous solutions with different compositions of ethanol (20/80 (v/v) and 40/60 (v/v)). When astaxanthin is dispersed in aqueous solutions the separation seems to occur mainly by electrostatic interactions. Therefore the recoveries are higher in the case of the cationic surfactant when astaxanthin particles are strongly negatively charged, as shown by the zeta potential measurements. When ethanol is present, highest recoveries are achieved with CGA produced from the non-ionic surfactant, which indicates that, under these conditions, separation is driven mainly by hydrophobic interactions. In experiments with ethanolic/aqueous suspensions, when the hydrophobicity of the surfactant was increased by increasing volumes of SPAN 80, the CGA produced were less stable; thus higher recoveries of astaxanthin under conditions that favour hydrophobic interactions were not observed. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
Colloidal indigo is reduced to an aqueous solution of leuco-indigo in a mediated two-electron process converting the water-insoluble dye into the water-soluble leuco form. The colloidal dye does not interact directly with the electrode surface, and to employ an electrochemical process for this reduction, the redox mediator 1,8-dihydroxyanthraquinone (1,8-DHAQ) is used to transfer electrons from the electrode to the dye. The mediated reduction process is investigated at a (500-kHz ultrasound-assisted) rotating disc electrode, and the quantitative analysis of voltammetric data is attempted employing the Digisim numerical simulation software package. At the most effective temperature, 353 K, the diffusion coefficient for 1,8-DHAQ is (0.84 +/- 0.08)x10(-9) m(2) s(-1), and it is shown that an apparently kinetically controlled reaction between the reduced form of the mediator and the colloidal indigo occurs within the diffusion layer at the electrode surface. The apparent bimolecular rate constant k (app)=3 mol m(-3) s(-1) for the rate law d[leuco-indigo]/dt = k(app) x [mediator] x [indigo] is determined and attributed to a mediator diffusion controlled dissolution of the colloid particles. The average particle size and the number of molecules per particles are estimated from the apparent bimolecular rate constant and confirmed by scanning electron microscopy.
Resumo:
In the present paper the potential application of colloidal gas aphrons (CGA) to the recovery of antioxidants from wine-making waste extracts is investigated. CGA were generated by stirring a buffered solution (400 ml) of a cationic surfactant(cetyltrimethylammonium bromide, CTAB) at 8000 rpm for 10 minutes. Trials were carried out on standard solutions (2 ml) of gallic acid (GA) 200 mg/l with varying volumes of colloidal gas aphrons (20-60 ml) generated with varying concentrations of CTAB (2 and 4 mM). Influence of pH, solvent (buffered aqueous solution and ethanol), CTAB to GA molar ratio on recovery were studied. Best recovery (63%) was achieved from an aqueous solution of GA and at a CTAB to GA molar ratio of 16. Separation is mainly driven by electrostatic interactions but pH conditions are to be optimised to preserve the GA antioxidant power.
Resumo:
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.
Resumo:
The aim of this study is to investigate the separation of astaxanthin from the cells of Phaffia rhodozyma using colloidal gas aphrons (CGA), which are surfactant stabilized microbubbles, in a flotation column. It was reported in previous studies that optimum recoveries are achieved at conditions that favor electrostatic interactions. Therefore, in this study, CGA generated from the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) were applied to suspensions of cells pretreated with NaOH. The different operation modes (batch or continuous) and the effect of volumetric ratio of CGA to feed, initial concentration of feed, operating height, and flow rate of CGA on the separation of astaxanthin were investigated. The volumetric ratio was found to have a significant effect on the separation of astaxanthin for both batch and continuous experiments. Additionally, the effect of homogenization of the cells on the purity of the recovered fractions was investigated, showing that the homogenization resulted in increased purity. Moreover, different concentrations of surfactant were used for the generation of CGA for the recovery of astaxanthin on batch mode; it was found that recoveries up to 98% could be achieved using CGA generated from a CTAB solution 0.8 mM, which is below the CTAB critical micellar concentration (CMC). These results offer important information for the scale-up of the separation of astaxanthin from the cells of P. rhodozyma using CGA.
Resumo:
In a previous study we have demonstrated that gallic acid (GA) in its anionic form can be recovered from aqueous solutions using colloidal gas aphrons (CGA) generated from the cationic surfactant cetyltrimethylammonium bromide (CTAB). The aim of the present work is to get a better understanding of the separation mechanism in order to determine the optimum operating conditions to maximise the recovery of GA while preserving its antioxidant properties. Zeta potential measurements were carried out to characterise the surface charge of GA, CTAB and their mixtures at three different pH conditions (both in buffers and in aqueous solutions). GA interacted strongly with CTAB at pH higher than its pKa 3.14 where it is ionised and negatively charged. However, at pH higher than 7 GA becomes oxidised and loses its antioxidant power. GA recovery was mainly affected by pH, ionic strength, surfactant/GA molar ratio, mixing conditions and contact time. Scale-up of the separation using a flotation column resulted in both higher recovery and reproducibility. Preliminary experiments with grape marc extracts confirmed the potential application of this separation for the recovery of polyphenols from complex feedstocks
Resumo:
Noncovalent interactions play key roles in many natural processes leading to the self-assembly of molecules with the formation of supramolecular structures. One of the most important forces responsible for self-assembly is hydrogen bonding, which also plays an important role in the self-assembly of synthetic polymers in aqueous solutions. Proton-accepting polymers can associate with proton-donating polymers via hydrogen bonding in aqueous solutions and form polymer-polymer or interpolymer complexes. There has been an increased interest among researchers in hydrogen-bonded interpolymer complexes since the first pioneering papers were published in the early 1960s. Several hundred research papers have been published on various aspects of complex formation reactions in solutions and interfaces, properties of interpolymer complexes and their potential applications. This book focuses on the latest developments in the area of interpolymer complexation via hydrogen bonding. It represents a collection of original and review articles written by recognized experts from Germany, Greece, Kazakhstan, Poland, Romania, Russia, UK, Ukraine, and the USA. It highlights many important applications of interpolymer complexes, including the stabilization of colloidal systems, pharmaceuticals, and nanomaterials.
Resumo:
Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D-35cl/D-37cl varied from 1.00128 +/- 0.00017 (1 sigma) at 2 degrees C to 1.00192 +/- 0.00015 at 80 degrees C. For bromine, D-79Br/D-81Br varied from 1.00098 +/- 0.00009 at 2 degrees C to 1.0064 +/- 0.00013 at 21 degrees C and 1.00078 +/- 0.00018 (1 sigma) at 80 degrees C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Rio Tinto river in SW Spain is a classic example of acid mine drainage and the focus of an increasing amount of research including environmental geochemistry, extremophile microbiology and Mars-analogue studies. Its 5000-year mining legacy has resulted in a wide range of point inputs including spoil heaps and tunnels draining underground workings. The variety of inputs and importance of the river as a research site make it an ideal location for investigating sulphide oxidation mechanisms at the field scale. Mass balance calculations showed that pyrite oxidation accounts for over 93% of the dissolved sulphate derived from sulphide oxidation in the Rio Tinto point inputs. Oxygen isotopes in water and sulphate were analysed from a variety of drainage sources and displayed delta O-18((SO4-H2O)) values from 3.9 to 13.6 parts per thousand, indicating that different oxidation pathways occurred at different sites within the catchment. The most commonly used approach to interpreting field oxygen isotope data applies water and oxygen fractionation factors derived from laboratory experiments. We demonstrate that this approach cannot explain high delta O-18((SO4-H2O)) values in a manner that is consistent with recent models of pyrite and sulphoxyanion oxidation. In the Rio Tinto, high delta O-18((SO4-H2O)) values (11.2-13.6 parts per thousand) occur in concentrated (Fe = 172-829 mM), low pH (0.88-1.4), ferrous iron (68-91% of total Fe) waters and are most simply explained by a mechanism involving a dissolved sulphite intermediate, sulphite-water oxygen equilibrium exchange and finally sulphite oxidation to sulphate with O-2. In contrast, drainage from large waste blocks of acid volcanic tuff with pyritiferous veins also had low pH (1.7). but had a low delta O-18((SO4-H2O)) value of 4.0 parts per thousand and high concentrations of ferric iron (Fe(III) = 185 mM, total Fe = 186 mM), suggesting a pathway where ferric iron is the primary oxidant, water is the primary source of oxygen in the sulphate and where sulphate is released directly from the pyrite surface. However, problems remain with the sulphite-water oxygen exchange model and recommendations are therefore made for future experiments to refine our understanding of oxygen isotopes in pyrite oxidation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.
Resumo:
Protein oxidation within cells exposed to oxidative free radicals has been reported to occur in an uninhibited manner with both hydroxyl and peroxyl radicals. In contrast, THP-1 cells exposed to peroxyl radicals (ROO center dot) generated by thermo decomposition of the azo compound AAPH showed a distinct lag phase of at least 6 h, during which time no protein oxidation or cell death was observed. Glutathione appears to be the source of the lag phase as cellular levels were observed to rapidly decrease during this period. Removal of glutathione with buthionine sulfoxamine eliminated the lag phase. At the end of the lag phase there was a rapid loss of cellular MTT reducing activity and the appearance of large numbers of propidium iodide/annexin-V staining necrotic cells with only 10% of the cells appearing apoptotic (annexin-V staining only). Cytochrome c was released into the cytoplasm after 12 h of incubation but no increase in caspase-3 activity was found at any time points. We propose that the rapid loss of glutathione caused by the AAPH peroxyl radicals resulted in the loss of caspase activity and the initiation of protein oxidation. The lack of caspase-3 activity appears to have caused the cells to undergo necrosis in response to protein oxidation and other cellular damage. (c) 2007 Elsevier B.V. All rights reserved.