69 resultados para Aqueous Solutions

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report on the interaction of KLVFF-PEG with fibrinogen (Fbg) in neutral aqueous solutions at 20 degrees C, for particular ratios of KLVFF-PEG to Fbg concentration, Delta = CKLVFF-PEG/C-Fbg- Our results show the formation of Fbg/KLVFF-PEG complexes for Delta > 0, such that there is not an extended network of complexes throughout the solution. In addition, cleaved protein and Fbg dimers are identified in the solution for Delta >= 0. There is a dramatic change in the tertiary structure of the Fbg upon KLVFF-PEG binding, although the KLVFF-PEG binds to the Fbg without affecting the secondary structure elements of the glycoprotein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase separation behaviour in aqueous mixtures of poly(methyl vinyl ether) and hydroxypropylcellulose has been studied by cloud points method and viscometric measurements. The miscibility of these blends in solid state has been assessed by infrared spectroscopy; methanol vapours sorption experiments and scanning electron microscopy. The values of Gibbs energy of mixing of the polymers and their blends with methanol as well as between each other were calculated. It was found that in solid state the polymers can interact with methanol very well but the polymer-polymer interactions are unfavourable. Although in aqueous solutions the polymers exhibit some intermolecular interactions their solid blends are not completely miscible. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions between hydroxypropylmethylcellulose (HPMC) and poly(acrylic acid) (PAA) as well as poly(methacrylic acid) (PMMA) resulting in formation of hydrophobic interpolymer complexes (IPC) via hydrogen bonding have been studied in aqueous solutions in acidic medium. The formation of IPC of two different compositions (2:1 and 4:1) has been detected for complexes of PAA and HPMC. The critical pH values for complexation of HPMC with PAA and PMAA were determined by the turbidimetric method. It was found that PAA shows the lower complexation ability compared to PMAA due to the more hydrophobic nature of the latter polyacid. The temperature-induced phase separation in HPMC-PAA solution mixtures depends greatly on the components ratio and PAA molecular weight. The complexation ability of hydroxypropylmethylcellulose with respect to poly(acrylic acid) was found to be similar to the complexation ability of methylcellulose, lower than that of hydroxypropylcellulose and higher than that of hydroxyethylcellulose. (c) 2006 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, we studied the preparation of biomimetic triblock copolymer (ABA) membranes in aqueous solution and their deposition into solid supports. The self-assembly structures of the ABA in aqueous solution was investigated by using optical microscopy, dynamic light scattering, electron microscopy (EM) and SAXS. Spherical and tubular polymersomes were found at the highest concentrations investigated. The mechanism of deposition on solid supports (mica and glass) was elucidated by using atomic force microscopy (AFM). The deposition results in the formation of a uniform defect-free membrane at suitable polymer concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a fluid cell for the measurement of aqueous solutions of biomolecules adapted particularly for the requirements of THz time-domain spectroscopy. The design is simple, requires small-volume samples, avoids cross-contamination and is inexpensive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MD simulation studies showing the influence of porosity and carbon surface oxidation on phenol adsorption from aqueous solutions on carbons are reported. Based on a realistic model of activated carbon, three carbon structures with gradually changed microporosity were created. Next, a different number of surface oxygen groups was introduced. The pores with diameters around 0.6 nm are optimal for phenol adsorption and after the introduction of surface oxygen functionalities, adsorption of phenol decreases (in accordance with experimental data) for all studied models. This decrease is caused by a pore blocking effect due to the saturation of surface oxygen groups by highly hydrogen-bounded water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been found that hydrogels may be formed by microwave irradiation of aqueous solutions containing appropriate combinations of polymers. This new method of hydrogel synthesis yields sterile hydrogels without the use of monomers, eliminating the need for the removal of unreacted species from the final product. Results for two particularly successful combinations, poly(vinyl alcohol) with either poly(acrylic acid) or poly(methylvinylether-alt-maleic anhydride), are presented. Irradiation using temperatures of 100–150 °C was found to yield hydrogels with large equilibrium swelling degrees of 500–1000 g g−1. Material leached from both types of hydrogel shows little cytotoxicity towards HT29 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using molecular dynamics simulations, we find a reversible transition between the dispersion and aggregation states of solute molecules in aqueous solutions confined in nanoscale geometry, which is not observed in macroscopic systems. The nanoscale confinement also leads to a significant increase of the critical aggregation concentration (CAC). A theoretical model based on Gibbs free energy calculation is developed to describe the simulation results. It indicates that the reversible state transition is attributed to the low free energy barrier (of order kBT) in between two energy minima corresponding to the dispersion and aggregation states, and the enhancement of the CAC results from the fact that at lower concentrations the number of solute molecules is not large enough to allow the formation of a stable cluster in the confined systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solid-like particles and chain network with a mesh size of 1-3 nm are present; nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have non-uniform structure with “frozen” areas interconnected by single chains in Gaussian conformation. SANS data with deuterated “invisible” PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The micellization of F127 (E98P67E98) in dilute aqueous solutions of polyethylene glycol (PEG6000 and PEG35000) and poly(vinylpyrrolidone) (PVP K30 and PVP K90) is studied. The average hydrodynamic radius (rh,app) obtained from the dynamic light scattering technique increased with increase in PEG concentration but decreased on addition of PVP, results which are consistent with interaction of the micelles with PEG and the formation of micelles clusters, but no such interaction occurs with PVP. Tube inversion was used to determine the onset of gelation. The critical concentration of F127 for gelation increased on addition of PEG and of PVP K30 but decreased on addition of PVP K90. Small-angle X-ray scattering (SAXS) was used to show that the 30 wt% F127 gel structure (fcc) was independent of polymer type and concentration, as was the d-spacing and so the micelle hard-sphere radius. The maximum elastic modulus (G0 max) of 30 wt% F127 decreased from its value for water alone as PEG was added, but was little changed by adding PVP. These results are consistent with the packed-micelles in the 30 wt% F127 gel being effectively isolated from the polymer solution on the microscale while, especially for the PEG, being mixed on the macroscale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The self-assembly in films dried from aqueous solutions of a modified amyloid beta peptide fragment is studied. We focus on sequence A beta(16-20), KLVFF, extended by two alanines at the N-terminus to give AAKLVFF. Self-assembly into twisted ribbon fibrils is observed, as confirmed by transmission electron microscopy (TEM). Dynamic light scattering reveals the semi-flexible nature of the AAKLVFF fibrils, while polarized optical microscopy shows that the peptide fibrils crystallize after an aqueous solution of AAKLVFF is matured over 5 days. The secondary structure of the fibrils is studied by FT-IR, circular dichroism and X-ray diffraction (XRD), which provide evidence for beta-sheet structure in the fibril. From high resolution TEM it is concluded that the average width of an AAKLVFF fibril is (63 +/- 18) nm, indicating that these fibrils comprise beta-sheets with multiple repeats of the unit cell, determined by XRD to have b and c dimensions 1.9 and 4.4 nm with an a axis 0.96 nm, corresponding to twice the peptide backbone spacing in the antiparallel beta-sheet. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interactions of bovine serum albumin (BSA) with three ethylene oxide/butylene oxide (E/B) copolymers having different block lengths and varying molecular architectures is examined in this study in aqueous solutions. Dynamic light scattering (DLS) indicates the absence of BSA-polymer binding in micellar systems of copolymers with lengthy hydrophilic blocks. On the contrary, stable protein-polyrner aggregates were observed in the case of E18B10 block copolymer. Results from DLS and SAXS suggest the dissociation of E/B copolymer micelles in the presence of protein and the absorption of polymer chains to BSA surface. At high protein loadings, bound BSA adopts a more compact conformation in solution. The secondary structure of the protein remains essentially unaffected even at high polymer concentrations. Raman spectroscopy was used to give insight to the configurations of the bound molecules in concentrated solutions. In the vicinity of the critical gel concentration of E18B10 introduction of BSA can dramatically modify the phase diagram, inducing a gel-sol-gel transition. The overall picture of the interaction diagram of the E18B10-BSA reflects the shrinkage of the suspended particles due to destabilization of micelles induced by BSA and the gelator nature of the globular protein. SAXS and rheology were used to further characterize the structure and flow behavior of the polymer-protein hybrid gels and sols.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The interactions of sodium dodecyl sulfate (SDS) with poly(ethylene oxide)/poly(alkylene oxide) (E/A) block copolymers are explored in this study: With respect to the specific compositional characteristics of the copolymer, introduction of SDS can induce fundamentally different effects to the self-assembly behavior of E/A copolymer solutions. In the case of the E18B10-SDS system (E = poly(ethylene oxide) and B = poly(butylene oxide)) development of large surfactant-polymer aggregates was observed. In the case of B20E610-SDS, B12E227B12-SDS, E40B10E40-SDS, E19P43E19-SDS (P = poly(propylene oxide)), the formation of smaller particles compared to pure polymeric micelles points to micellar suppression induced by the ionic surfactant. This effect can be ascribed to a physical binding between the hydrophobic block of unassociated macromolecules and the non-polar tail of the surfactant. Analysis of critical micelle concentrations (cmc*) of polymer-surfactant aqueous solutions within the framework of regular solution theory for binary surfactants revealed negative deviations from ideal behavior for E40B10E40-SDS and E19P43E19-SDS, but positive deviations for E18B10-SDS. Ultrasonic studies performed for the E19P43E19-SDS system enabled the identification of three distinct regions, corresponding to three main steps of the complexation; SDS absorption to the hydrophobic backbone of polymer, development of polymer-surfactant complexes and gradual breakdown of the mixed aggregates. (C) 2008 Elsevier Inc. All rights reserved.