8 resultados para Aqüeductes-Canals-Gravat
em CentAUR: Central Archive University of Reading - UK
Resumo:
Two strains of a previously undescribed Actinomyces-like bacterium were recovered in pure culture from infected root canals of teeth. Analysis by biochemical testing and polyacrylamide gel electrophoresis of whole-cell proteins indicated that the strains closely resembled each other phenotypically but were distinct from previously described Actinomyces and Arcanobacterium species. Comparative 16S rRNA gene-sequencing studies showed the bacterium to be a hitherto unknown subline within a group of Actinomyces species which includes Actinomyces bovis, the type species of the genus. Based on phylogenetic and phenotypic evidence, we propose that the unknown bacterium isolated from human clinical specimens be classified as Actinomyces radicidentis sp. nov. The type strain of Actinomyces radicidentis is CCUG 36733.
Resumo:
Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.
Resumo:
TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid, DCA, taurolithocholic acid, TLCA) and the selective agonists oleanolic acid (OA) and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (CCDC) stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, assessed by confocal microscopy. DCA, TLCA and OA did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, determined by bioluminescence resonance energy transfer. CCDC stimulated a low level of TGR5 interaction with β-arrestin2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of extracellular signal regulated kinase (ERK1/2). BRET analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.
Resumo:
We present a multiproxy study of land use by a pre-Columbian earth mounds culture in the Bolivian Amazon. The Monumental Mounds Region (MMR) is an archaeological sub-region characterized by hundreds of pre-Columbian habitation mounds associated with a complex network of canals and causeways, and situated in the forest–savanna mosaic of the Llanos de Moxos. Pollen, phytolith, and charcoal analyses were performed on a sediment core from a large lake (14 km2), Laguna San José (14°56.97′S, 64°29.70′W).We found evidence of high levels of anthropogenic burning from AD 400 to AD 1280, corroborating dated occupation layers in two nearby excavated habitation mounds. The charcoal decline pre-dates the arrival of Europeans by at least 100 yr, and challenges the notion that the mounds culture declined because of European colonization. We show that the surrounding savanna soils were sufficiently fertile to support crops, and the presence of maize throughout the record shows that the area was continuously cultivated despite land-use change at the end of the earthmounds culture. We suggest that burning was largely confined to the savannas, rather than forests, and that pre-Columbian deforestation was localized to the vicinity of individual habitation mounds, whereas the inter-mound areas remained largely forested.
Resumo:
This study reconstructs the depositional environments that accompanied both ice advance and ice retreat of the last British–Irish Ice Sheet in NE England during the Last Glacial Maximum, and proposes three regional ice-flow phases. The Late Devensian (29–22 cal. ka BP) Tyne Gap Ice Stream initially deposited the Blackhall Till Formation during shelf-edge glaciation (Phase I). This subglacial traction till comprises several related facies, including stratified and laminated diamictons, tectonites, and sand and gravel beds deposited both in subglacial canals and in proglacial streams. Eventually, stagnation of the Tyne Gap Ice Stream led to ice-marginal sedimentation in County Durham (Phase II). During the Dimlington Stadial (21 cal. ka BP), the North Sea Lobe advanced towards the coastline of N Norfolk. This resulted initially in sandur deposition (widespread, tabular sand and gravel; the Peterlee Sand and Gravel Formation; Phase II) and ultimately in deposition of the Horden Till Formation (Phase III), a massive subglacial till. As the North Sea Lobe overrode previous formations, it thrusted and stacked sediments in County Durham, and dammed proglacial lakes between the east-coast ice, the Pennine uplands and the remaining Pennine ice. The North Sea Lobe retreated after Heinrich Event 1 (16 ka). This study highlights the complexity of ice flow during the Late Devensian glaciation of NE England, with changing environmental and oceanic conditions forcing a mobile and sensitive ice sheet.