7 resultados para Approximate control

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by a matched case-control study to investigate potential risk factors for meningococcal disease amongst adolescents, we consider the analysis of matched case-control studies where disease incidence, and possibly other risk factors, vary with time of year. For the cases, the time of infection may be recorded. For controls, however, the recorded time is simply the time of data collection, which is shortly after the time of infection for the matched case, and so depends on the latter. We show that the effect of risk factors and interactions may be adjusted for the time of year effect in a standard conditional logistic regression analysis without introducing any bias. We also show that, if the time delay between data collection for cases and controls is constant, provided this delay is not very short, estimates of the time of year effect are approximately unbiased. In the case that the length of the delay varies over time, the estimate of the time of year effect is biased. We obtain an approximate expression for the degree of bias in this case. Copyright © 2004 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sequential techniques can enhance the efficiency of the approximate Bayesian computation algorithm, as in Sisson et al.'s (2007) partial rejection control version. While this method is based upon the theoretical works of Del Moral et al. (2006), the application to approximate Bayesian computation results in a bias in the approximation to the posterior. An alternative version based on genuine importance sampling arguments bypasses this difficulty, in connection with the population Monte Carlo method of Cappe et al. (2004), and it includes an automatic scaling of the forward kernel. When applied to a population genetics example, it compares favourably with two other versions of the approximate algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of heterometal substituted gallium phosphates, (N2C4H7)(0.5+x)[Me0.5+xGa2.5-x(PO4)(3)] (Me = Mn, Fe, Co and Zn, x approximate to 0.25), has been synthesised under solvothermal conditions at 433 K in ethylene glycol using I-methylimidazole as a templating agent and their structures determined at 150 K using single-crystal X-ray diffraction. The compounds are isostructural, crystallising in the monoclinic space group C 2/c, with lattice parameters ca. 15 x 13 x 15 angstrom and beta = 112 degrees, and adopt the laumontite framework type (LAU). The incorporation of 1-methylimidazole cations into the one-dimensional pore systems of these materials is about three quarters the uptake value obtained previously for the less-bulky amine cations of imidazole and pyridine in other MeGaPO laumontites, which have the formula (TH)[MeGa2(PO4)(3)] (Me = Mn, Fe, Co and Zn; T = C5H5N and C3N2H4). The size, shape and charge of the amine clearly influence both the metal-phosphate framework stoichiometry (i.e. Me2+:Ga3+ ratio) and the framework charge. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid control strategy integrating dynamic neural networks and feedback linearization into a predictive control scheme. Feedback linearization is an important nonlinear control technique which transforms a nonlinear system into a linear system using nonlinear transformations and a model of the plant. In this work, empirical models based on dynamic neural networks have been employed. Dynamic neural networks are mathematical structures described by differential equations, which can be trained to approximate general nonlinear systems. A case study based on a mixing process is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[English] This paper is a tutorial introduction to pseudospectral optimal control. With pseudospectral methods, a function is approximated as a linear combination of smooth basis functions, which are often chosen to be Legendre or Chebyshev polynomials. Collocation of the differential-algebraic equations is performed at orthogonal collocation points, which are selected to yield interpolation of high accuracy. Pseudospectral methods directly discretize the original optimal control problem to recast it into a nonlinear programming format. A numerical optimizer is then employed to find approximate local optimal solutions. The paper also briefly describes the functionality and implementation of PSOPT, an open source software package written in C++ that employs pseudospectral discretization methods to solve multi-phase optimal control problems. The software implements the Legendre and Chebyshev pseudospectral methods, and it has useful features such as automatic differentiation, sparsity detection, and automatic scaling. The use of pseudospectral methods is illustrated in two problems taken from the literature on computational optimal control. [Portuguese] Este artigo e um tutorial introdutorio sobre controle otimo pseudo-espectral. Em metodos pseudo-espectrais, uma funcao e aproximada como uma combinacao linear de funcoes de base suaves, tipicamente escolhidas como polinomios de Legendre ou Chebyshev. A colocacao de equacoes algebrico-diferenciais e realizada em pontos de colocacao ortogonal, que sao selecionados de modo a minimizar o erro de interpolacao. Metodos pseudoespectrais discretizam o problema de controle otimo original de modo a converte-lo em um problema de programa cao nao-linear. Um otimizador numerico e entao empregado para obter solucoes localmente otimas. Este artigo tambem descreve sucintamente a funcionalidade e a implementacao de um pacote computacional de codigo aberto escrito em C++ chamado PSOPT. Tal pacote emprega metodos de discretizacao pseudo-spectrais para resolver problemas de controle otimo com multiplas fase. O PSOPT permite a utilizacao de metodos de Legendre ou Chebyshev, e possui caractersticas uteis tais como diferenciacao automatica, deteccao de esparsidade e escalonamento automatico. O uso de metodos pseudo-espectrais e ilustrado em dois problemas retirados da literatura de controle otimo computacional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approximate closed form sample size formula for determining non-inferiority in active-control trials with binary data. We use the odds-ratio as the measure of the relative treatment effect, derive the sample size formula based on the score test and compare it with a second, well-known formula based on the Wald test. Both closed form formulae are compared with simulations based on the likelihood ratio test. Within the range of parameter values investigated, the score test closed form formula is reasonably accurate when non-inferiority margins are based on odds-ratios of about 0.5 or above and when the magnitude of the odds ratio under the alternative hypothesis lies between about 1 and 2.5. The accuracy generally decreases as the odds ratio under the alternative hypothesis moves upwards from 1. As the non-inferiority margin odds ratio decreases from 0.5, the score test closed form formula increasingly overestimates the sample size irrespective of the magnitude of the odds ratio under the alternative hypothesis. The Wald test closed form formula is also reasonably accurate in the cases where the score test closed form formula works well. Outside these scenarios, the Wald test closed form formula can either underestimate or overestimate the sample size, depending on the magnitude of the non-inferiority margin odds ratio and the odds ratio under the alternative hypothesis. Although neither approximation is accurate for all cases, both approaches lead to satisfactory sample size calculation for non-inferiority trials with binary data where the odds ratio is the parameter of interest.