9 resultados para Antirheumatic Drug Trials

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes an approach to optimal design of phase II clinical trials using Bayesian decision theory. The method proposed extends that suggested by Stallard (1998, Biometrics54, 279–294) in which designs were obtained to maximize a gain function including the cost of drug development and the benefit from a successful therapy. Here, the approach is extended by the consideration of other potential therapies, the development of which is competing for the same limited resources. The resulting optimal designs are shown to have frequentist properties much more similar to those traditionally used in phase II trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests. We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs. Copyright (c) 2007 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer conjugates are nano-sized, multicomponent constructs already in the clinic as anticancer compounds, both as single agents or as elements of combinations. They have the potential to improve pharmacological therapy of a variety of solid tumors. Polymer-drug conjugation promotes passive tumor targeting by the enhanced permeability and retention (EPR) effect and allows for lysosomotropic drug delivery following endocytic capture. In the first part of this review, we analyze the promising results arising from clinical trials of polymer-bound chemotherapy. The experience gained on these studies provides the basis for the development of a more sophisticated second-generation of polymer conjugates. However, many challenges still lay ahead providing scope to develop and refine this field. The "technology platform'' of polymer therapeutics allows the development of both new and exciting polymeric materials, the incorporation of novel bioactive agents and combinations thereof to address recent advances in drug therapy. The rational design of polymer drug conjugates is expected to realize the true potential of these "nanomedicines".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concerns about potentially misleading reporting of pharmaceutical industry research have surfaced many times. The potential for duality (and thereby conflict) of interest is only too clear when you consider the sums of money required for the discovery, development and commercialization of new medicines. As the ability of major, mid-size and small pharmaceutical companies to innovate has waned, as evidenced by the seemingly relentless decline in the numbers of new medicines approved by Food and Drug Administration and European Medicines Agency year-on-year, not only has the cost per new approved medicine risen: so too has the public and media concern about the extent to which the pharmaceutical industry is open and honest about the efficacy, safety and quality of the drugs we manufacture and sell. In 2005 an Editorial in Journal of the American Medical Association made clear that, so great was their concern about misleading reporting of industry-sponsored studies, henceforth no article would be published that was not also guaranteed by independent statistical analysis. We examine the precursors to this Editorial, as well as its immediate and lasting effects for statisticians, for the manner in which statistical analysis is carried out, and for the industry more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Despite the promising benefits of adaptive designs (ADs), their routine use, especially in confirmatory trials, is lagging behind the prominence given to them in the statistical literature. Much of the previous research to understand barriers and potential facilitators to the use of ADs has been driven from a pharmaceutical drug development perspective, with little focus on trials in the public sector. In this paper, we explore key stakeholders’ experiences, perceptions and views on barriers and facilitators to the use of ADs in publicly funded confirmatory trials. Methods Semi-structured, in-depth interviews of key stakeholders in clinical trials research (CTU directors, funding board and panel members, statisticians, regulators, chief investigators, data monitoring committee members and health economists) were conducted through telephone or face-to-face sessions, predominantly in the UK. We purposively selected participants sequentially to optimise maximum variation in views and experiences. We employed the framework approach to analyse the qualitative data. Results We interviewed 27 participants. We found some of the perceived barriers to be: lack of knowledge and experience coupled with paucity of case studies, lack of applied training, degree of reluctance to use ADs, lack of bridge funding and time to support design work, lack of statistical expertise, some anxiety about the impact of early trial stopping on researchers’ employment contracts, lack of understanding of acceptable scope of ADs and when ADs are appropriate, and statistical and practical complexities. Reluctance to use ADs seemed to be influenced by: therapeutic area, unfamiliarity, concerns about their robustness in decision-making and acceptability of findings to change practice, perceived complexities and proposed type of AD, among others. Conclusions There are still considerable multifaceted, individual and organisational obstacles to be addressed to improve uptake, and successful implementation of ADs when appropriate. Nevertheless, inferred positive change in attitudes and receptiveness towards the appropriate use of ADs by public funders are supportive and are a stepping stone for the future utilisation of ADs by researchers.