57 resultados para Antioxidant (Trolox®)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Glutamate excitotoxicity is implicated in the aetiology of amyotrophic lateral sclerosis (ALS) with impairment of glutamate transport into astrocytes a possible cause of glutamate-induced injury to motor neurons. It is possible that mutations of Cu/Zn superoxide dismutase (SOD1), responsible for about 20% of familial ALS, down-regulates glutamate transporters via oxidative stress. We transfected primary mouse astrocytes to investigate the effect of the FALS-linked mutant hSOD1(G93A) and wild-type SOD1 (hSOD1(wt)) on the glutamate uptake system. Using western blotting, immunocytochemistry and RT-PCR it was shown that expression of either hSOD1(G93A) or hSOD1(wt) in astrocytes produced down-regulation of the levels of a glutamate transporter GLT-1, without alterations in its mRNA level. hSOD1(G93A) or hSOD1(wt) expression caused a decrease of the monomeric form of GLT-1 without increasing oxidative multimers of GLT-1. The effects were selective to GLT-1, since another glutamate transporter GLAST protein and mRNA levels were not altered. Reflecting the decrease in GLT-1 protein, [H-3]D-aspartate uptake was reduced in cultures expressing hSOD1(G93A) or hSOD1(wt). The hSOD1-induced decline in GLT-1 protein and [H-3]D-aspartate uptake was not blocked by the antioxidant Trolox nor potentiated by antioxidant depletion using catalase and glutathione peroxidase inhibitors. Measurement of 2',7'-dichlorofluorescein (DCF)-induced fluorescence revealed that expression of hSOD1(G93A) or hSOD1(wt) in astrocytes does not lead to detectable increase of intracellular reactive oxygen species. This study suggests that levels of GLT-1 protein in astrocytes are reduced rapidly by overexpression of hSOD1, and is due to a property shared between the wild-type and G93A mutant form, but does not involve the production of intracellular oxidative stress.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Red leaf lettuce (Lollo Rosso) was grown under three types of plastic films that varied in transparency to UV radiation (designated as UV block, UV low, and UV window). Flavonoid composition was determined by high-performance liquid chromatography (HPLC), total phenolics by the Folin-Ciocalteu assay, and antioxiclant capacity by the oxygen radical absorbance capacity (ORAC) assay. Exposure to increased levels of UV radiation during cultivation caused the leaves to redden and increased concentrations of total phenols and the main flavonoids, quercetin and cyanidin glycosides, as well as luteolin conjugates and phenolic acids. The total phenol content increased from 1.6 mg of gallic acid equivalents (GAE)/g of fresh weight (FW) for lettuce grown under UV block film to 2.9 and 3.5 mg of GAE/g of FW for lettuce grown under the UV low and UV window films. The antioxiclant activity was also higher in lettuce exposed to higher levels of UV radiation with ORAC values of 25.4 and 55.1 mu mol of Trolox equivalents/g of FW for lettuce grown under the UV block and UV window films, respectively. The content of phenolic acids, quantified as caffeic acid, was also different, ranging from 6.2 to 11.1 mu mol/g of FW for lettuce cultivated under the lowest and highest UV exposure plastic films, respectively. Higher concentrations of the flavonoid glycosides were observed with increased exposure to UV radiation, as demonstrated by the concentrations of aglycones after hydrolysis, which were cyanidin (ranging from 165 to 793 mu g/g), quercetin (ranging from 196 to 880,mu g/g), and luteolin (ranging from 19 to 152 mu g/g). The results demonstrate the potential of the use of UV-transparent plastic as a means of increasing beneficial flavonoid content of red leaf lettuce when the crop is grown in polytunnels.
Resumo:
Phenol content and antioxidant activity of two Spanish onion varieties, namely white onion and Calcot de Valls, have been studied. White onions contained higher phenol content than Calcot onions, with values which ranged from 2.57 +/- 0.51 to 6.53 +/- 0.16 mg gallic acid equivalents/g dry weight (GAE/g DW) and 0.51 +/- 0.22 to 2.58 +/- 0.16 mg GAE/g DW, respectively, depending on the solvent used. Higher phenol content was associated with higher antioxidant capacity. White onion extracts had the highest antioxidant activity at 86.6 +/- 2.97 and 29.9 +/- 2.49 mu mol Trolox/g DW for TEAC and FRAP assays, respectively, while the values for the Calcot variety were 17.5 +/- 0.46 and 16.1 +/- 0.10 mu mol Trolox/g DW. The antioxidant capacity of freeze dried powder from both onion varieties was also tested in sunflower oil-in-water emulsions, and hydroperoxide formation was monitored during storage at 40 degrees C. In accordance with differences in phenol content, Spanish white onions had better antioxidant activity.. while Calcot was only effective in the early stages of the oxidation process. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The concentration of hydroxytyrosol (3,4-DHPEA) and its secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEA-EA) in virgin olive oil decreased rapidly when the oil was repeatedly used for preparing french fries in deep-fat frying operations. At the end of the first frying process (10 min at 180 degreesC), the concentration of the dihydroxyphenol components was reduced to 50-60% of the original value, and after six frying operations only about 10% of the initial components remained. However, tyrosol (p-HPEA) and its derivatives (p-HPEA-EDA and p-HPEA-EA) in the oil were much more stable during 12 frying operations. The reduction in their original concentration was much smaller than that for hydroxytyrosol and its derivatives and showed a roughly linear relationship with the number of frying operations. The antioxidant activity of the phenolic extract measured using the DPPH test rapidly diminished during the first six frying processes, from a total antioxidant activity higher than 740,mumol of Trolox/kg down to less than 250 mumol/kg. On the other hand, the concentration of polar compounds, oxidized triacylglycerol monomers (oxTGs), dimeric TGs, and polymerized TGs rapidly increased from the sixth frying operation onward, when the antioxidant activity of the phenolic extract was very low, and as a consequence the oil was much more susceptible to oxidation. The loss of antioxidant activity in the phenolic fraction due to deep-fat frying was confirmed by the storage oil and oil-in-water emulsions containing added extracts from olive oil used for 12 frying operations.
Resumo:
Sunflower oil-in-water emulsions containing TBHQ, caffeic acid, epigallocatechin gallate (EGCG), or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), both with and without BSA, were stored at 50 and 30degreesC. Oxidation of the oil was monitored by determination of the PV, conjugated diene content, and hexanal formation. Emulsions containing EGCG, caffeic acid, and, to a lesser extent, Trolox were much more stable during storage in the presence of BSA than in its absence even though BSA itself did not provide an antioxidant effect. BSA did not have a synergistic effect on the antioxidant activity of TBHQ. The BSA structure changed, with a considerable loss of fluorescent tryptophan groups during storage of solutions containing BSA and antioxidants, and a BSA-antioxidant adduct with radical-scavenging activity was formed. The highest radical-scavenging activity observed was for the isolated protein from a sample containing EGCG and BSA incubated at 30degreesC for 10 d. This fraction contained unchanged BSA as well as BSA-antioxidant adduct, but 95.7% of the initial fluorescence had been lost, showing that most of the BSA had been altered. It can be concluded that BSA exerts its synergistic effect with antioxidants because of formation of a protein-antioxidant adduct during storage, which is concentrated at the oil-water interface owing to the surface-active nature of the protein.
Resumo:
Tea polyphenols, especially the catechins, are potent antimicrobial and antioxidant agents, with positive effects on human health. White tea is one of the less studied teas but the flavour is more accepted than that of green tea in Europe. The concentrations of various catechins in 13 different kinds of infusion were determined by capillary electrophoresis. The total polyphenol content (Folin-Ciocalteu method), the trolox equivalent antioxidant capacity (TEAC value determined with the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation) and the inhibitory effects of infusions on the growth of some microorganisms were determined. Five different infusions (black, white, green and red teas and rooibos infusion) were added to a model food system, comprising a sunflower oil-in-water emulsion containing 0% or 0.2% bovine serum albumin (BSA), and the oxidative stability was studied during storage at 37 degrees C. Oxidation of the oil was monitored by determination of the peroxide value. The highest radical-scavenging activity observed was for the green and white teas. Emulsions containing these extracts from these teas were much more stable during storage when BSA was present than when it was not present, even though BSA itself did not provide an antioxidant effect (at 0.2% concentration). Rooibos infusion did not show the same synergy with BSA. Green tea and white tea showed similar inhibitions of several microorganisms and the magnitude of this was comparable to that of the commercial infusion 2 (C.I.2), "te de la belleza". This tea also had an antioxidant activity comparable to green tea. (C) 2007 Published by Elsevier Ltd.
Resumo:
Lipid oxidation is the major form of deterioration in foods because it decreases food quality and nutritional value, and may have negative health implications. Selected aromatic plant extracts from leaves, flowers and stems of rosemary, thyme and lavender were investigated for their antioxidant activity. The total polyphenol content was determined by the Folin-Ciocalteu assay and the antioxidant capacity was determined by the Trolox equivalent antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl, oxygen radical absorbance capacity and ferric-reducing antioxidant power assays. For all four antioxidant assays, the extracts from thyme flowers, lavender leaves and thyme leaves had the highest antioxidant activity, followed by rosemary stems, rosemary leaves, and lavender stems, and the lavender flowers and thyme stems had the lowest antioxidant activity. The antioxidant activity was correlated with the polyphenol content, although minor deviations were observed. In oil-in-water emulsion, extracts from rosemary leaves and thyme leaves were most effective at retarding oxidation followed by the rosemary stems and thyme flowers. Extracts from thyme flowers and lavender leaves were less effective in the emulsion than predicted by the homogeneous antioxidant assays. This study demonstrated the potential use of plants extract as substitutes for synthetic antioxidants.
Resumo:
Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cytoactive agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, alpha-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. gamma-Interferon causes macrophages to generate 7,8dihydroneopterin/neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.
Resumo:
The in vitro antioxidant activity and the protective effect against human low density lipoprotein oxidation of coffees prepared using different degrees of roasting was evaluated. Coffees with the highest amount of brown pigments (dark coffee) showed the highest peroxyl radical scavenging activity. These coffees also protected human low-density lipoprotein (LDL) against oxidation, although green coffee extracts showed more protection. In a different experiment, coffee extracts were incubated with human plasma prior to isolation of LDL particles. This showed, for the first time, that incubation of plasma with dark, but not green coffee extracts protected the LDL against oxidation by copper or by the thermolabile azo compound AAPH. Antioxidants in the dark coffee extracts must therefore have become associated with the LDL particles. Brown compounds, especially those derived from the Maillard reaction, are the compounds most likely to be responsible for this activity.
Resumo:
In this paper we report the antioxidant activity of different compounds which are present in coffee or are produced as a result of the metabolism of this beverage. In vitro methods such as the ABTS(center dot+) [ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] decolorization assay and the oxygen radical absorbance capacity assay (ORAC) were used to assess the capacity of coffee compounds to scavenge free radicals. The importance of caffeine metabolites and colonic metabolites in the overall antioxidant activity associated with coffee consumption is shown. Colonic metabolites such as m-coumaric acid and dihydroferulic acid showed high antioxidant activity. The ability of these compounds to protect human low-density lipoprotein (LDL) oxidation by copper and 2,2'-azobis(2-amidinopropane) dihydrochloride was also explored. 1-Methyluric acid was particularly effective at inhibiting LDL oxidative modification. Different experiments showed that this caffeine metabolite is not incorporated into LDL particles. However, at physiologically relevant concentrations, it was able to delay for more than 13 h LDL oxidation by copper.
Resumo:
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated With Cu2+ ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu2+ to Cu+ and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu+ oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The aim of the current study was to investigate the antioxidant and cellular activity of the olive oil phenolics oleuropein, tyrosol, hydroxytyrosol, and homovanillic alcohol (which is also a major metabolite of hydroxytyrosol). Well-characterized chemical and biochemical assays were used to assess the antioxidant potential of the compounds. Further experiments investigated their influence in cell culture on cytotoxic effects of hydrogen peroxide and oxidized low-density lipoprotein (LDL), nitric oxide production by activated macrophages, and secretion of chemoattractant and cell adhesion molecules by the endothelium. Inhibitory influences on in vitro platelet aggregation were also measured. The antioxidant assays indicated that homovanillic alcohol was a significantly more potent antioxidant than the other phenolics, both in chemical assays and in prolonging the lag phase of LDL oxidation. Cell culture experiments suggested that the olive oil phenolics induce a significant reduction in the secretion of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (and a trend towards a reduced secretion of monocyte chemoattractant protein-1), and protect against cytotoxic effects of hydrogen peroxide and oxidized LDL. However, no influence on nitric oxide production or platelet aggregation was evident. The data show that olive oil phenolics have biochemical and cellular actions, which, if also apparent in vivo, could exert cardioprotective effects.
Resumo:
Soy isoflavones have been extensively studied because of their possible benefits to human health. Genistein, the major isoflavone aglycone, has received most attention; however, it undergoes extensive metabolism (e.g. conjugation with sulfuric acid) in the gut and liver, which may affect its biological proper-ties. This study investigated the antioxidant activity and free radical-scavenging properties of genistein, genistein-4'-sulfate and genistein-4'-7-disulfate as well as their effect on platelet aggregation and monocyte and endothelial function. Electron spin resonance spectroscopy (ESR) and spin trapping data and other standard antioxidant assays indicated that genistein is a relatively weak antioxidant compared to quercetin and that its sulfated metabolites are even less effective. Furthermore, genistein-4'-sulfate was less potent than genistem, and genistein-4'-7-disulfate even less potent, at inhibiting collagen-induced platelet aggregation, nitric oxide (NO) production by macrophages, and secretion by primary human endothelial cells of monocyte chemoattractant protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1). The current data suggest that sulfation of genistein, with the associated loss of hydroxyl groups, decreases its antioxidant activity and its effect on platelet aggregation, inflammation, cell adhesion and chemotaxis. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of M-r below 500 was prepared as a model for the low M-r components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low M-r serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL.jlr These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.