16 resultados para Antennas (Electronics)
em CentAUR: Central Archive University of Reading - UK
Resumo:
A new type of horn antenna for operation at 1.6 THz, that can be fabricated monolithically with 1/4-height micromachined waveguide, is described. Height, limitations imposed by the micromachining process are overcome by removing a tapered slot in the upper surface of a scalar horn, allowing the E-plane fields to extend outside the confines of the metallic structure before radiation, with a consequent reduction in E-plane beamwidth. 1.6 THz radiation pattern measurements for different designs show that, while there is scope for further optimisation, 3 dB beamwidths of 24 degrees and 17.5 degrees in the E- and H-planes, respectively, can be achieved.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
The paper deals with an issue in space time block coding (STBC) design. It considers whether, over a time-selective channel, orthogonal STBC (O-STBC) or non-orthogonal STBC (NO-STBC) performs better. It is shown that, under time-selectiveness, once vehicle speed has risen above a certain value, NO-STBC always outperforms O-STBC across the whole SNR range. Also, considering that all existing NO-STBC schemes have been investigated under quasi-static channels only, a new simple receiver is derived for the NO-STBC system under time-selective channels.
Resumo:
A series of scale model measurements of transverse electromagnetic mode tapered slot antennas are presented. They show that the beam launched by this type of antenna is astigmatic. It is shown how an off-axis spherical mirror can be used to correct this astigmatism to allow efficient coupling to quasi-optical systems. A millimetre wave antenna and mirror combination is described and, with the aid of solid state noise diodes, the coupling of the launched beam to a quasi-optical spectrometer is shown to be in good agreement with that predicted by the scale model measurements.
Resumo:
Previously the author described how control engineering can be introduced using little mathematics in a first year course, the aim being to make the subject accessible across different degrees. One reaction to this was that it was a good idea, but there was not space to include it in the curriculum where, typically control engineering is not introduced until the second year. This paper describes how the author has used a review of the first year teaching to develop a module in which feedback, control and electronics are integrated coherently. This is beneficial as concepts in control and electronics mutually reinforce each other. This has been achieved during a reduction in the available time for teaching the material. This paper describes the strategy used to successfully develop the module, the integrated module and positive student reaction.
Resumo:
We extended 'littleBits' electronic components by attaching them to a larger base that was designed to help make them easier to pick up and handle, and easier to assemble into circuits for people with learning disabilities. A pilot study with a group of students with learning disabilities was very positive. There were fewer difficulties in assembling the components into circuits, and problems such as attempting to connect them the wrong way round or the wrong way up were eliminated completely.
Resumo:
In a previous article, I wrote a brief piece on how to enhance papers that have been published at one of the IEEE Consumer Electronics (CE) Society conferences to create papers that can be considered for publishing in IEEE Transactions on Consumer Electronics (T-CE) [1]. Basically, it included some hints and tips to enhance a conference paper into what is required for a full archival journal paper and not fall foul of self-plagiarism. This article focuses on writing original papers specifically for T-CE. After three years as the journal’s editor-in-chief (EiC), a previous eight years on the editorial board, and having reviewed some 4,000 T-CE papers, I decided to write this article to archive and detail for prospective authors what I have learned over this time. Of course, there are numerous articles on writing good papers—some are really useful [2], but they do not address the specific issues of writing for a journal whose topic (scope) is not widely understood or, indeed, is often misunderstood.
Resumo:
The “littleBits go LARGE" project extends littleBits electronic modules, an existing product that is aimed at simplifying electronics for a wide range of audiences. In this project we augment the littleBits modules to make them more accessible to people with learning disabilities. We will demonstrate how we have made the modules easier to handle and manipulate physically, and how we are augmenting the design of the modules to make their functions more obvious and understandable.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.