45 resultados para Antarctic Treaty (1959)

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antarctic stratospheric ozone depletion has been associated with an observed downward trend in tropospheric geopotential height and temperature. Stratospheric ozone depletion peaks in October–November, whereas tropospheric trends are largest in December–January, concurrent with maximum ozone changes close to the tropopause. Surface temperatures are most sensitive to ozone loss near the tropopause, therefore it has been suggested that the observed tropospheric response is forced mainly by ozone depletion in the lower stratosphere. In this study the climate response to ozone depletion exclusively below 164 hPa is simulated using HadSM3-L64, and compared with simulations in which ozone depletion is prescribed exclusively above 164 hPa. Results indicate that the tropospheric response is dominated by ozone changes above 164 hPa, with ozone changes in the lowermost stratosphere playing an insignificant role. A tropospheric response is also seen in fall/winter which agrees well with observations and has not been found in modeling studies previously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strength of the Antarctic Circumpolar Current (ACC) is believed to depend on the westerly wind stress blowing over the Southern Ocean, although the exact relationship between winds and circumpolar transport is yet to be determined. Here we show, based on theoretical arguments and a hierarchy of numerical modeling experiments, that the global pycnocline depth and the baroclinic ACC transport are set by an integral measure of the wind stress over the path of the ACC, taking into account its northward deflection. Our results assume that the mesoscale eddy diffusivity is independent of the mean flow; while the relationship between wind stress and ACC transport will be more complicated in an eddy-saturated regime, our conclusion that the ACC is driven by winds over the circumpolar streamlines is likely to be robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C-1-utilizing Methanolobus and Methanococcoides and the H-2-utilizing Methanogenium. Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that diapycnal mixing can drive a significant Antarctic Circumpolar Current (ACC) volume transport, even when the mixing is located remotely in northern-hemisphere ocean basins. In the case of remote forcing, the globally-averaged diapycnal mixing coefficient is the important parameter. This result is anticipated from theoretical arguments and demonstrated in a global ocean circulation model. The impact of enhanced diapycnal mixing on the ACC during glacial periods is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CMIP3 (IPCC AR4) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface meridional density gradient. The steepening of isopycnal surfaces induced by increased wind forcing leads to enhanced (parameterized) eddy-induced transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation, and into the observed decadal-scale steady ACC transport.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory is presented for the adjustment of the Antarctic Circumpolar Current (ACC) and global pycnocline to a sudden and sustained change in wind forcing. The adjustment timescale is controlled by the mesoscale eddy diffusivity across the ACC, the mean width of the ACC, the surface area of the ocean basins to the north, and deep water formation in the North Atlantic. In particular, northern sinking may have the potential to shorten the timescale and reduce its sensitivity to Southern Ocean eddies, but the relative importance of northern sinking and Southern Ocean eddies cannot be determined precisely, largely due to limitations in the parameterization of northern sinking. Although it is clear that the main processes that control the adjustment timescale are those which counteract the deepening of the global pycnocline, the theory also suggests that the timescale can be subtly modified by wind forcing over the ACC and global diapycnal mixing. Results from calculations with a reduced-gravity model compare well with the theory. The multidecadal-centennial adjustment timescale implies that long observational time series will be required to detect dynamic change in the ACC due to anthropogenic forcing. The potential role of Southern Ocean mesoscale eddy activity in determining both the equilibrium state of the ACC and the timescale over which it adjusts suggests that the response to anthropogenic forcing may be different in coupled ocean-atmosphere climate models that parameterize and resolve mesoscale eddies.

Relevância:

20.00% 20.00%

Publicador: