34 resultados para Angular displacement
em CentAUR: Central Archive University of Reading - UK
Resumo:
Baroclinic instability of perturbations described by the linearized primitive quations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamiltonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’—potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there. At short wavelengths the upper CRW is focused in the mid-troposphere just above the steering level of the NM, but at longer wavelengths the upper CRW has a second wave-activity maximum at the tropopause. In the absence of meridional shear, CRW behaviour is very similar to that of Charney modes, while shear results in a meridional slant with height of the air-parcel displacement-structures of CRWs in sympathy with basic-state zonal angular-velocity surfaces. A consequence of this slant is that baroclinically growing eddies (on jets broader than the Rossby radius) must tilt downshear in the horizontal, giving rise to up-gradient momentum fluxes that tend to accelerate the barotropic component of the jet.
Resumo:
Pairs of counter-propagating Rossby waves (CRWs) can be used to describe baroclinic instability in linearized primitive-equation dynamics, employing simple propagation and interaction mechanisms at only two locations in the meridional plane—the CRW ‘home-bases’. Here, it is shown how some CRW properties are remarkably robust as a growing baroclinic wave develops nonlinearly. For example, the phase difference between upper-level and lower-level waves in potential-vorticity contours, defined initially at the home-bases of the CRWs, remains almost constant throughout baroclinic wave life cycles, despite the occurrence of frontogenesis and Rossby-wave breaking. As the lower wave saturates nonlinearly the whole baroclinic wave changes phase speed from that of the normal mode to that of the self-induced phase speed of the upper CRW. On zonal jets without surface meridional shear, this must always act to slow the baroclinic wave. The direction of wave breaking when a basic state has surface meridional shear can be anticipated because the displacement structures of CRWs tend to be coherent along surfaces of constant basic-state angular velocity, U. This results in up-gradient horizontal momentum fluxes for baroclinically growing disturbances. The momentum flux acts to shift the jet meridionally in the direction of the increasing surface U, so that the upper CRW breaks in the same direction as occurred at low levels
Resumo:
In order to gain understanding of the movement of pollutant metals in soil. the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmol(c) kg(-1). 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2. A simple Burns-type model (Wineglass) using an adsorption coefficient (K-d) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (K-d=0.73 and 1.29 ml g(-1), respectively). Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%. cation exchange capacity (CEC) 11.8 and 6.1 cmol(c) kg(-1) respectively) were leached with 10 mM calcium chloride. nitrate and perchlorate. With chloride. the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g(-1). but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus. a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g(-1) respectively). Although pH values were a little hi-her with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate. Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This paper reports CFD and experimental results of the characteristics of wall confluent jets in a room. The results presented show the behaviour of wall confluent jets in the form of velocity profiles, the spreading rate of jets on the surface, jets decay, etc. The empirical equations derived are compared with other types of air jets. In addition, the flow in wall confluent jets is compared with the flow in displacement ventilation supply, with regards to the vertical and horizontal spreading on the floor. It is concluded that the jet momentum of wall confluent jets can be more conserved than other jets. Thus, wall confluent jets have a greater spread over the floor than displacement flow.
Resumo:
The complete fracture behaviour of ductile double edge notched tension (DENT) specimen is analysed with an approximate model, which is then used to discuss the essential work of fracture (EWF) concept. The model results are compared with the experimental results for an aluminium alloy 6082-O. The restrictions on the ligament size for valid application of the EWF method are discussed with the aid of the model. The model is used to suggest an improved method of obtaining the cohesive stress-displacement relationship for the fracture process zone (FPZ).
Resumo:
Visuospatial attentional bias was examined in Huntington's disease (HID) patients with mild disease, asymptomatic gene-positive patients and controls. No group differences were found on the grey scales task (which is a non-motor task of visuospatial attentional bias), although patients' trinucleotide (CAG) repeat length correlated with increasing leftward bias. On the line bisection task, symptomatic patients made significantly larger leftward bisection errors relative to controls, who showed the normal slight degree of leftward error (pseudo-neglect). The asymptomatic group showed a trend for greater leftward error than controls. A subset of participants went on to have structural MRI, which showed a correlation between increased leftward error on the line bisection task and reduced density in the angular gyrus area (BA39) bilaterally. This finding is consistent with recent literature suggesting a critical role for the angular gyrus in the lateralization of visuospatial attention.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A radiometric analysis of the light coupled by optical fiber amplitude modulating extrinsic-type reflectance displacement sensors is presented. Uncut fiber sensors show the largest range but a smaller responsivity. Single cut fiber sensors exhibit an improvement in responsivity at the expense of range. A further increase in responsivity as well as a reduction in the operational range is obtained when the double cut sensor configuration is implemented. The double cut configuration is particularly suitable in applications where feedback action is applied to the moving reflector surface. © 2000 American Institute of Physics.