27 resultados para Anemone, cover

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of (a) On-farm trials (eight) over a two-year period designed to test the effectiveness of leguminous cover crops in terms of increasing maize yields in Igalaland, Nigeria. (b) A survey designed to monitor the extent of, and reasons behind, adoption of the leguminous cover crop technology in subsequent years by farmers involved, to varying degrees, in the trial programme. particular emphasis was placed on comparing adoption of leguminous cover crops with that of new crop varieties released by a non-governmental organization in the same area since the mid 1980s. While the leguminous cover crop technology boosted maize grain yields by 127 to 136% above an untreated control yield of between 141 and 171 kg ha(-1), the adoption rate (number of farmers adopting) was only 18%. By way of contrast, new crop varieties had a highly variable benefit in terms of yield advantage over local varieties, with the best average increase of around 20%. Adoption rates for new crop varieties, assessed as both the number of farmers growing the varieties and the number of plots planted to the varieties, were 40% on average. The paper discusses some key factors influencing adoption of the leguminous cover crop technology, including seed availability. Implications of these results for a local non-governmental organization, the Diocesan Development Services, concerned with promoting the leguminous cover crop technology are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports changes in supraglacial debris cover and supra-/proglacial lake development associated with recent glacier retreat (1985-2000) in the central Caucasus Mountains, Russia. Satellite imagery (Landsat TM and ETM+) was used to map the surface area and supraglacial debris cover on six neighbouring glaciers in the Adylsu valley through a process of manual digitizing on a false-colour composite of bands 5, 4, 3 (red, green, blue). The distribution and surface area of supraglacial and proglacial lakes was digitized for a larger area, which extended to the whole Landsat scene. We also compare our satellite interpretations to field observations in the Adylsu valley. Supraglacial debris cover ranges from < 5% to > 25% on individual glaciers, but glacier retreat between 1985 and 2000 resulted in a 3-6% increase in the proportion of each glacier covered by debris. The only exception to this trend was a very small glacier where debris cover did not change significantly and remote mapping proved more difficult. The increase in debris cover is characterized by a progressive upglacier migration, which we suggest is being driven by focused ablation (and therefore glacier thinning) at the up-glacier limit of the debris cover, resulting in the progressive exposure of englacial debris. Glacier retreat has also been accompanied by an increase in the number of proglacial and supraglacial lakes in our study area, from 16 in 1985 to 24 in 2000, representing a 57% increase in their cumulative surface area. These lakes appear to be impounded by relatively recently lateral and terminal moraines and by debris deposits on the surface of the glacier. The changes in glacier surface characteristics reported here are likely to exert a profound influence on glacier mass balance and their future response to climate change. They may also increase the likelihood of glacier-related hazards (lake outbursts, debris slides), and future monitoring is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new snow-soil-vegetation-atmosphere transfer (Snow-SVAT) scheme, which simulates the accumulation and ablation of the snow cover beneath a forest canopy, is presented. The model was formulated by coupling a canopy optical and thermal radiation model to a physically-based multi-layer snow model. This canopy radiation model is physically-based yet requires few parameters, so can be used when extensive in-situ field measurements are not available. Other forest effects such as the reduction of wind speed, interception of snow on the canopy and the deposition of litter were incorporated within this combined model, SNOWCAN, which was tested with data taken as part of the Boreal Ecosystem-Atmosphere Study (BOREAS) international collaborative experiment. Snow depths beneath four different canopy types and at an open site were simulated. Agreement between observed and simulated snow depths was generally good, with correlation coefficients ranging between r^2=0.94 and r^2=0.98 for all sites where automatic measurements were available. However, the simulated date of total snowpack ablation generally occurred later than the observed date. A comparison between simulated solar radiation and limited measurements of sub-canopy radiation at one site indicates that the model simulates the sub-canopy downwelling solar radiation early in the season to within measurement uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Joint UK Land Environmental Simulator (JULES) was run offline to investigate the sensitivity of land surface type changes over South Africa. Sensitivity tests were made in idealised experiments where the actual land surface cover is replaced by a single homogeneous surface type. The vegetation surface types on which some of the experiments were made are static. Experimental tests were evaluated against the control. The model results show among others that the change of the surface cover results in changes of other variables such as soil moisture, albedo, net radiation and etc. These changes are also visible in the spin up process. The model shows different surfaces spinning up at different cycles. Because JULES is the land surface model of Unified Model, the results could be more physically meaningful if it is coupled to the Unified Model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study clarifies the taxonomic status of Anemone coronaria and segregates the species and A. coronaria infraspecific variants using morphological and morphometric analyses. Principal component analysis of the coronaria group was performed on 25 quantitative and qualitative characters, and morphometric analysis of the A. coronaria infraspecific variants was performed on 21 quantitative and qualitative characters. The results showed that the A. coronaria group clustered into four major groups: A. coronaria L., A. biflora DC, A. bucharica (Regel) Juz.ex Komarov, and a final group including A. eranthioides Regel and A. tschernjaewii Regel. The data on the A. coronaria infraspecific variants clustered into six groups: A. coronaria L. var. coronaria L., var. cyanea Ard., var. albiflora Rouy & Fouc., var. parviflora Regel, var. ventreana Ard., and var. rissoana Ard. © 2007 The Linnean Society of London

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne LIght Detection And Ranging (LIDAR) provides accurate height information for objects on the earth, which makes LIDAR become more and more popular in terrain and land surveying. In particular, LIDAR data offer vital and significant features for land-cover classification which is an important task in many application domains. In this paper, an unsupervised approach based on an improved fuzzy Markov random field (FMRF) model is developed, by which the LIDAR data, its co-registered images acquired by optical sensors, i.e. aerial color image and near infrared image, and other derived features are fused effectively to improve the ability of the LIDAR system for the accurate land-cover classification. In the proposed FMRF model-based approach, the spatial contextual information is applied by modeling the image as a Markov random field (MRF), with which the fuzzy logic is introduced simultaneously to reduce the errors caused by the hard classification. Moreover, a Lagrange-Multiplier (LM) algorithm is employed to calculate a maximum A posteriori (MAP) estimate for the classification. The experimental results have proved that fusing the height data and optical images is particularly suited for the land-cover classification. The proposed approach works very well for the classification from airborne LIDAR data fused with its coregistered optical images and the average accuracy is improved to 88.9%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-scale bottom-up estimates of terrestrial carbon fluxes, whether based on models or inventory, are highly dependent on the assumed land cover. Most current land cover and land cover change maps are based on satellite data and are likely to be so for the foreseeable future. However, these maps show large differences, both at the class level and when transformed into Plant Functional Types (PFTs), and these can lead to large differences in terrestrial CO2 fluxes estimated by Dynamic Vegetation Models. In this study the Sheffield Dynamic Global Vegetation Model is used. We compare PFT maps and the resulting fluxes arising from the use of widely available moderate (1 km) resolution satellite-derived land cover maps (the Global Land Cover 2000 and several MODIS classification schemes), with fluxes calculated using a reference high (25 m) resolution land cover map specific to Great Britain (the Land Cover Map 2000). We demonstrate that uncertainty is introduced into carbon flux calculations by (1) incorrect or uncertain assignment of land cover classes to PFTs; (2) information loss at coarser resolutions; (3) difficulty in discriminating some vegetation types from satellite data. When averaged over Great Britain, modeled CO2 fluxes derived using the different 1 km resolution maps differ from estimates made using the reference map. The ranges of these differences are 254 gC m−2 a−1 in Gross Primary Production (GPP); 133 gC m−2 a−1 in Net Primary Production (NPP); and 43 gC m−2 a−1 in Net Ecosystem Production (NEP). In GPP this accounts for differences of −15.8% to 8.8%. Results for living biomass exhibit a range of 1109 gC m−2. The types of uncertainties due to land cover confusion are likely to be representative of many parts of the world, especially heterogeneous landscapes such as those found in western Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airborne lidar provides accurate height information of objects on the earth and has been recognized as a reliable and accurate surveying tool in many applications. In particular, lidar data offer vital and significant features for urban land-cover classification, which is an important task in urban land-use studies. In this article, we present an effective approach in which lidar data fused with its co-registered images (i.e. aerial colour images containing red, green and blue (RGB) bands and near-infrared (NIR) images) and other derived features are used effectively for accurate urban land-cover classification. The proposed approach begins with an initial classification performed by the Dempster–Shafer theory of evidence with a specifically designed basic probability assignment function. It outputs two results, i.e. the initial classification and pseudo-training samples, which are selected automatically according to the combined probability masses. Second, a support vector machine (SVM)-based probability estimator is adopted to compute the class conditional probability (CCP) for each pixel from the pseudo-training samples. Finally, a Markov random field (MRF) model is established to combine spatial contextual information into the classification. In this stage, the initial classification result and the CCP are exploited. An efficient belief propagation (EBP) algorithm is developed to search for the global minimum-energy solution for the maximum a posteriori (MAP)-MRF framework in which three techniques are developed to speed up the standard belief propagation (BP) algorithm. Lidar and its co-registered data acquired by Toposys Falcon II are used in performance tests. The experimental results prove that fusing the height data and optical images is particularly suited for urban land-cover classification. There is no training sample needed in the proposed approach, and the computational cost is relatively low. An average classification accuracy of 93.63% is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal was to quantitatively estimate and compare the fidelity of images acquired with a digital imaging system (ADAR 5500) and generated through scanning of color infrared aerial photographs (SCIRAP) using image-based metrics. Images were collected nearly simultaneously in two repetitive flights to generate multi-temporal datasets. Spatial fidelity of ADAR was lower than that of SCIRAP images. Radiometric noise was higher for SCIRAP than for ADAR images, even though noise from misregistration effects was lower. These results suggest that with careful control of film scanning, the overall fidelity of SCIRAP imagery can be comparable to that of digital multispectral camera data. Therefore, SCIRAP images can likely be used in conjunction with digital metric camera imagery in long-term landcover change analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remotely sensed land cover maps are increasingly used as inputs into environmental simulation models whose outputs inform decisions and policy-making. Risks associated with these decisions are dependent on model output uncertainty, which is in turn affected by the uncertainty of land cover inputs. This article presents a method of quantifying the uncertainty that results from potential mis-classification in remotely sensed land cover maps. In addition to quantifying uncertainty in the classification of individual pixels in the map, we also address the important case where land cover maps have been upscaled to a coarser grid to suit the users’ needs and are reported as proportions of land cover type. The approach is Bayesian and incorporates several layers of modelling but is straightforward to implement. First, we incorporate data in the confusion matrix derived from an independent field survey, and discuss the appropriate way to model such data. Second, we account for spatial correlation in the true land cover map, using the remotely sensed map as a prior. Third, spatial correlation in the mis-classification characteristics is induced by modelling their variance. The result is that we are able to simulate posterior means and variances for individual sites and the entire map using a simple Monte Carlo algorithm. The method is applied to the Land Cover Map 2000 for the region of England and Wales, a map used as an input into a current dynamic carbon flux model.