34 resultados para Anderson, Louisa Peterswald, d. 1882.
em CentAUR: Central Archive University of Reading - UK
Resumo:
The transreal numbers are a total number system in which even, arithmetical operation is well defined even-where. This has many benefits over the real numbers as a basis for computation and, possibly, for physical theories. We define the topology of the transreal numbers and show that it gives a more coherent interpretation of two's complement arithmetic than the conventional integer model. Trans-two's-complement arithmetic handles the infinities and 0/0 more coherently, and with very much less circuitry, than floating-point arithmetic. This reduction in circuitry is especially beneficial in parallel computers, such as the Perspex machine, and the increase in functionality makes Digital Signal Processing chips better suited to general computation.
Resumo:
The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.
Resumo:
We introduce transreal analysis as a generalisation of real analysis. We find that the generalisation of the real exponential and logarithmic functions is well defined for all transreal numbers. Hence, we derive well defined values of all transreal powers of all non-negative transreal numbers. In particular, we find a well defined value for zero to the power of zero. We also note that the computation of products via the transreal logarithm is identical to the transreal product, as expected. We then generalise all of the common, real, trigonometric functions to transreal functions and show that transreal (sin x)/x is well defined everywhere. This raises the possibility that transreal analysis is total, in other words, that every function and every limit is everywhere well defined. If so, transreal analysis should be an adequate mathematical basis for analysing the perspex machine - a theoretical, super-Turing machine that operates on a total geometry. We go on to dispel all of the standard counter "proofs" that purport to show that division by zero is impossible. This is done simply by carrying the proof through in transreal arithmetic or transreal analysis. We find that either the supposed counter proof has no content or else that it supports the contention that division by zero is possible. The supposed counter proofs rely on extending the standard systems in arbitrary and inconsistent ways and then showing, tautologously, that the chosen extensions are not consistent. This shows only that the chosen extensions are inconsistent and does not bear on the question of whether division by zero is logically possible. By contrast, transreal arithmetic is total and consistent so it defeats any possible "straw man" argument. Finally, we show how to arrange that a function has finite or else unmeasurable (nullity) values, but no infinite values. This arithmetical arrangement might prove useful in mathematical physics because it outlaws naked singularities in all equations.
Resumo:
Transreal arithmetic is a total arithmetic that contains real arithmetic, but which has no arithmetical exceptions. It allows the specification of the Universal Perspex Machine which unifies geometry with the Turing Machine. Here we axiomatise the algebraic structure of transreal arithmetic so that it provides a total arithmetic on any appropriate set of numbers. This opens up the possibility of specifying a version of floating-point arithmetic that does not have any arithmetical exceptions and in which every number is a first-class citizen. We find that literal numbers in the axioms are distinct. In other words, the axiomatisation does not require special axioms to force non-triviality. It follows that transreal arithmetic must be defined on a set of numbers that contains{-8,-1,0,1,8,&pphi;} as a proper subset. We note that the axioms have been shown to be consistent by machine proof.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.
Resumo:
In this paper we report the degree of reliability of image sequences taken by off-the-shelf TV cameras for modeling camera rotation and reconstructing 3D structure using computer vision techniques. This is done in spite of the fact that computer vision systems usually use imaging devices that are specifically designed for the human vision. Our scenario consists of a static scene and a mobile camera moving through the scene. The scene is any long axial building dominated by features along the three principal orientations and with at least one wall containing prominent repetitive planar features such as doors, windows bricks etc. The camera is an ordinary commercial camcorder moving along the axial axis of the scene and is allowed to rotate freely within the range +/- 10 degrees in all directions. This makes it possible that the camera be held by a walking unprofessional cameraman with normal gait, or to be mounted on a mobile robot. The system has been tested successfully on sequence of images of a variety of structured, but fairly cluttered scenes taken by different walking cameramen. The potential application areas of the system include medicine, robotics and photogrammetry.
Resumo:
This paper, one of a simultaneously published set, describes the establishment in 1990 of the UK standards project for the Pop programming language, and the progress of the project to the end of 1993.