32 resultados para Analysis of electromyographic signal
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Our aim is to reconstruct the brain-body loop of stroke patients via an EEG-driven robotic system. After the detection of motor command generation, the robotic arm should assist patient’s movement at the correct moment and in a natural way. In this study we performed EEG measurements from healthy subjects performing discrete spontaneous motion. An EEG analysis based on the temporal correlation of the brain activity was employed to determine the onset of single motion motor command generation.
Resumo:
Time/frequency and temporal analyses have been widely used in biomedical signal processing. These methods represent important characteristics of a signal in both time and frequency domain. In this way, essential features of the signal can be viewed and analysed in order to understand or model the physiological system. Historically, Fourier spectral analyses have provided a general method for examining the global energy/frequency distributions. However, an assumption inherent to these methods is the stationarity of the signal. As a result, Fourier methods are not generally an appropriate approach in the investigation of signals with transient components. This work presents the application of a new signal processing technique, empirical mode decomposition and the Hilbert spectrum, in the analysis of electromyographic signals. The results show that this method may provide not only an increase in the spectral resolution but also an insight into the underlying process of the muscle contraction.
Resumo:
This paper presents an in-depth critical discussion and derivation of a detailed small-signal analysis of the Phase-Shifted Full-Bridge (PSFB) converter. Circuit parasitics, resonant inductance and transformer turns ratio have all been taken into account in the evaluation of this topology’s open-loop control-to-output, line-to-output and load-to-output transfer functions. Accordingly, the significant impact of losses and resonant inductance on the converter’s transfer functions is highlighted. The enhanced dynamic model proposed in this paper enables the correct design of the converter compensator, including the effect of parasitics on the dynamic behavior of the PSFB converter. Detailed experimental results for a real-life 36V-to-14V/10A PSFB industrial application show excellent agreement with the predictions from the model proposed herein.1
Resumo:
The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.
Resumo:
Discrepancies between recent global earth albedo anomaly data obtained from the climate models, space and ground observations call for a new and better earth reflectance measurement technique. The SALEX (Space Ashen Light Explorer) instrument is a space-based visible and IR instrument for precise estimation of the global earth albedo by measuring the ashen light reflected off the shadowy side of the Moon from the low earth orbit. The instrument consists of a conventional 2-mirror telescope, a pair of a 3-mirror visible imager and an IR bolometer. The performance of this unique multi-channel optical system is sensitive to the stray light contamination due to the complex optical train incorporating several reflecting and refracting elements, associated mounts and the payload mechanical enclosure. This could be further aggravated by the very bright and extended observation target (i.e. the Moon). In this paper, we report the details of extensive stray light analysis including ghosts and cross-talks, leading to the optimum set of stray light precautions for the highest signal-to-noise ratio attainable.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C-1-utilizing Methanolobus and Methanococcoides and the H-2-utilizing Methanogenium. Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.
Resumo:
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.
Resumo:
Bifidobacterium bifidum NCIMB41171 carries four genes encoding different beta-galactosidases. One of them, named bbgIII, consisted of an open reading frame of 1,935 amino acid (a.a.) residues encoding a protein with a multidomain structure, commonly identified on cell wall bound enzymes, having a signal peptide, a membrane anchor, FIVAR domains, immunoglobulin Ig-like and discoidin-like domains. The other three genes, termed bbgI, bbgII and bbgIV, encoded proteins of 1,291, 689 and 1,052 a.a. residues, respectively, which were most probably intracellularly located. Two cases of protein evolution between strains of the same species were identified when the a.a. sequences of the BbgI and BbgIII were compared with homologous proteins from B. bifidum DSM20215. The homologous proteins were found to be differentiated at the C-terminal a.a. part either due to a single nucleotide insertion or to a whole DNA sequence insertion, respectively. The bbgIV gene was located in a gene organisation surrounded by divergently transcribed genes putatively for sugar transport (galactoside-symporter) and gene regulation (LacI-transcriptional regulator), a structure that was found to be highly conserved in B. longum, B. adolescentis and B. infantis, suggesting optimal organisation shared amongst those species.
Resumo:
Frequency recognition is an important task in many engineering fields such as audio signal processing and telecommunications engineering, for example in applications like Dual-Tone Multi-Frequency (DTMF) detection or the recognition of the carrier frequency of a Global Positioning, System (GPS) signal. This paper will present results of investigations on several common Fourier Transform-based frequency recognition algorithms implemented in real time on a Texas Instruments (TI) TMS320C6713 Digital Signal Processor (DSP) core. In addition, suitable metrics are going to be evaluated in order to ascertain which of these selected algorithms is appropriate for audio signal processing(1).
Resumo:
Since 1966, coded orthogonal frequency division multiplexing (COFDM) has been investigated to determine the possibility of reducing the overall throughput of a digitally modulated terrestrial television channel. In the investigations, many assumptions have emerged. One common misconception is that in a terrestrial environment, COFDM has an inherent immunity to multipath interference. A theoretical analysis of a multipath channel, along with simulation results has shown that this assumption does not hold the information is considered when including the radio frequency modulation and demodulation. This paper presents a background into the inception of COFDM, a mathematical analysis of the digitally modulated television signal under multipath conditions and the results of a European Digital Video Broadcasting-Terrestrial (DVB-T) compliant simulation model with MPEG-2 bitstreams transmitted under various multipath conditions.
Resumo:
This paper analyzes the convergence behavior of the least mean square (LMS) filter when used in an adaptive code division multiple access (CDMA) detector consisting of a tapped delay line with adjustable tap weights. The sampling rate may be equal to or higher than the chip rate, and these correspond to chip-spaced (CS) and fractionally spaced (FS) detection, respectively. It is shown that CS and FS detectors with the same time-span exhibit identical convergence behavior if the baseband received signal is strictly bandlimited to half the chip rate. Even in the practical case when this condition is not met, deviations from this observation are imperceptible unless the initial tap-weight vector gives an extremely large mean squared error (MSE). This phenomenon is carefully explained with reference to the eigenvalues of the correlation matrix when the input signal is not perfectly bandlimited. The inadequacy of the eigenvalue spread of the tap-input correlation matrix as an indicator of the transient behavior and the influence of the initial tap weight vector on convergence speed are highlighted. Specifically, a initialization within the signal subspace or to the origin leads to very much faster convergence compared with initialization in the a noise subspace.