40 resultados para Amazon squall lines

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper provides for the first time an objective short-term (8 yr) climatology of African convective weather systems based on satellite imagery. Eight years of infrared International Satellite Cloud Climatology Project-European Space Agency's Meteorological Satellite (ISCCP-Meteosat) satellite imagery has been analyzed using objective feature identification, tracking, and statistical techniques for the July, August, and September periods and the region of Africa and the adjacent Atlantic ocean. This allows various diagnostics to be computed and used to study the distribution of mesoscale and synoptic-scale convective weather systems from mesoscale cloud clusters and squall lines to tropical cyclones. An 8-yr seasonal climatology (1983-90) and the seasonal cycle of this convective activity are presented and discussed. Also discussed is the dependence of organized convection for this region, on the orography, convective, and potential instability and vertical wind shear using European Centre for Medium-Range Weather Forecasts reanalysis data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use and land cover changes in the Brazilian Amazon have major implications for regional and global carbon (C) cycling. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the region. The main objective of this study was to evaluate the accuracy of the RothC and Century models at estimating soil organic C (SOC) changes under forest-to-pasture conditions in the Brazilian Amazon. We used data from 11 site-specific 'forest to pasture' chronosequences with the Century Ecosystem Model (Century 4.0) and the Rothamsted C Model (RothC 26.3). The models predicted that forest clearance and conversion to well managed pasture would cause an initial decline in soil C stocks (0-20 cm depth), followed in the majority of cases by a slow rise to levels exceeding those under native forest. One exception to this pattern was a chronosequence in Suia-Missu, which is under degraded pasture. In three other chronosequences the recovery of soil C under pasture appeared to be only to about the same level as under the previous forest. Statistical tests were applied to determine levels of agreement between simulated SOC stocks and observed stocks for all the sites within the 11 chronosequences. The models also provided reasonable estimates (coefficient of correlation = 0.8) of the microbial biomass C in the 0-10 cm soil layer for three chronosequences, when compared with available measured data. The Century model adequately predicted the magnitude and the overall trend in delta C-13 for the six chronosequences where measured 813 C data were available. This study gave independent tests of model performance, as no adjustments were made to the models to generate outputs. Our results suggest that modelling techniques can be successfully used for monitoring soil C stocks and changes, allowing both the identification of current patterns in the soil and the projection of future conditions. Results were used and discussed not only to evaluate soil C dynamics but also to indicate soil C sequestration opportunities for the Brazilian Amazon region. Moreover, modelling studies in these 'forest to pasture' systems have important applications, for example, the calculation of CO, emissions from land use change in national greenhouse gas inventories. (0 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently we have little understanding of the impacts of land use change on soil C stocks in the Brazilian Amazon. Such information is needed to determine impacts'6n the global C cycle and the sustainability of agricultural systems that are replacing native forest. The aim of this study was to predict soil carbon stocks and changes in the Brazilian Amazon during the period between 2000 and 2030, using the GEFSOC soil carbon (C) modelling system. In order to do so, we devised current and future land use scenarios for the Brazilian Amazon, taking into account: (i) deforestation, rates from the past three decades, (ii) census data on land use from 1940 to 2000, including the expansion and intensification of agriculture in the region, (iii) available information on management practices, primarily related to well managed pasture versus degraded pasture and conventional systems versus no-tillage systems for soybean (Glycine max) and (iv) FAO predictions on agricultural land use and land use changes for the years 2015 and 2030. The land use scenarios were integrated with spatially explicit soils data (SOTER database), climate, potential natural vegetation and land management units using the recently developed GEFSOC soil C modelling system. Results are presented in map, table and graph form for the entire Brazilian Amazon for the current situation (1990 and 2000) and the future (2015 and 2030). Results include soil organic C (SOC) stocks and SOC stock change rates estimated by three methods: (i) the Century ecosystem model, (ii) the Rothamsted C model and (iii) the intergovernmental panel on climate change (IPCC) method for assessing soil C at regional scale. In addition, we show estimated values of above and belowground biomass for native vegetation, pasture and soybean. The results on regional SOC stocks compare reasonably well with those based on mapping approaches. The GEFSOC system provided a means of efficiently handling complex interactions among biotic-edapho-climatic conditions (> 363,000 combinations) in a very large area (similar to 500 Mha) such as the Brazilian Amazon. All of the methods used showed a decline in SOC stock for the period studied; Century and RothC simulated values for 2030 being about 7% lower than those in 1990. Values from Century and RothC (30,430 and 25,000 Tg for the 0-20 cm layer for the Brazilian Amazon region were higher than those obtained from the IPCC system (23,400 Tg in the 0-30 cm layer). Finally; our results can help understand the major biogeochemical cycles that influence soil fertility and help devise management strategies that enhance the sustainability of these areas and thus slow further deforestation. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the question of whether p-hydroxybenzoic acid, the common metabolite of parabens, possesses oestrogenic activity in human breast cancer cell lines. The alkyl esters of p-hydroxybenzoic acid (parabens) are used widely as preservatives in consumer products to which the human population is exposed and have been shown previously to possess oestrogenic activity and to be present in human breast tumour tissue, which is an oestrogen-responsive tissue. Recent work has shown p-hydroxybenzoic acid to give an oestrogenic response in the rodent uterotrophic assay. We report here that p-hydroxybenzoic acid possesses oestrogenic activity in a panel of assays in human breast cancer cell lines. p-Hydroxybenzoic acid was able to displace [H-3]oestradiol from cytosolic oestrogen receptor of MCF7 human breast cancer cells by 54% at 5 x 10(6)-fold molar excess and by 99% at 10(7)-fold molar excess. It was able to increase the expression of a stably integrated oestrogen responsive reporter gene (ERE-CAT) at a concentration of 5 x 10(-4) M in MCF7 cells after 24 h and 7 days, which could be inhibited by the anti-oestrogen ICI 182 780 (Faslodex, fulvestrant). Proliferation of two human breast cancer cell lines (MCF7, ZR-75-1) could be increased by 10(-5) M p-hydroxybenzoic acid. Following on from previous studies showing a decrease in oestrogenic activity of parabens with shortening of the linear alkyl chain length, this study has compared the oestrogenic activity of p-hydroxybenzoic acid where the alkyl grouping is no longer present with methylparaben, which has the shortest alkyl group. Intrinsic oestrogenic activity of p-hydroxybenzoic acid was similar to that of methylparaben in terms of relative binding to the oestrogen receptor but its oestrogenic activity on gene expression and cell proliferation was lower than that of methylparaben. It can be concluded that removal of the ester group from parabens does not abrogate its oestrogenic activity and that p-hydroxybenzoic acid can give oestrogenic responses in human breast cancer cells. Copyright (C) 2005 John Wiley & Sons, Ltd.