4 resultados para Amapá (BR)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Analytical potential energy functions are reported for HOX (X=F, Cl, Br, I). The surface for HOF predicts two metastable minima as well as the equilibrium configuration. These correspond to HFO (bent) and OHF (linear). Ab initio calculations performed for the HOF surface confirm these predictions. Comparisons are drawn between the two sets of results, and a vibrational analysis is undertaken for the hydrogen bonded OHF species. For HOCl, one further minimum is predicted, corresponding to HClO (bent), the parameters for which compare favourably with those reported from ab initio studies. In contrast, only the equilibrium configurations are predicted to be stable for HOBr and HOI.
Resumo:
The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).
Resumo:
Stepwise electrochemical reduction of the complex fac-[Mn(Br)(CO)(3)(tmbp)] (tmbp = 4,4',5,5'-tetramethyl-2,2'-biphosphinine) produces the dimer [Mn(CO)(3)(tmbp)](2) and the five-coordinate anion [Mn(CO)(3)(tmbp)](-). All three members of the redox series have been characterized by single-crystal X-ray diffraction. The crystallographic data provide valuable insight into the localization of the added electrons on the (carbonyl)manganese and tmbp centers. In particular, the formulation of the two-electron-reduced anion as [Mn-0(CO)(3)(tmbp(-))](-) also agrees with the analysis of its IR nu(CO) wavenumbers and with the results of density functional theoretical (DFT) MO calculations on this compound. The strongly delocalized pi-bonding in the anion stabilizes its five-coordinate geometry and results in the appearance of several mixed Mn-to-tmbp charge-transfer/IL(tmbp) transitions in the near-UV-vis spectral region. A thorough voltammetric and UV-vis/IR spectroelectrochemical study of the reduction path provided evidence for a direct formation of [Mn(CO)(3)(tmbp)](-) via a two-electron ECE mechanism involving the [Mn(CO)(3)(tmbp)](.) radical transient. At ambient temperature [Mn(CO)(3)(tmbp)](-) reacts rapidly with nonreduced fac-[Mn(Br)(CO)(3)(tmbp)] to produce [Mn(CO)(3)(tmbp)](2). Comparison with the analogous 2,2'-bipyridine complexes has revealed striking similarity in the bonding properties and reactivity, despite the stronger pi-acceptor character of the tmbp ligand.
Resumo:
The syntheses, spectroscopic characterisation and in one case (X = Br) the single-crystal structure of the novel PdI–PdI dimers [Pd2(µ-X)2(PBut3)2](X = Br or I) have been determined; preliminary results on their reactions with CO, H2, CNC6H3Me2 and C2H2 have also been obtained.