53 resultados para Alternative fluids. Steam injection. Simulation. IOR. Modeling of reservoirs
em CentAUR: Central Archive University of Reading - UK
Resumo:
Rheology of milk foams generated by steam injection was studied during the transient destabilization process using steady flow and dynamic oscillatory techniques: yield stress (τ_y) values were obtained from a stress ramp (0.2 to 25 Pa) and from strain amplitude sweep (0.001 to 3 at 1 Hz of frequency); elastic (G') and viscous (G") moduli were measured by frequency sweep (0.1 to 150 Hz at 0.05 of strain); and the apparent viscosity (η_a) was obtained from the flow curves generated from the stress ramp. The effect of plate roughness and the sweep time on τ_y was also assessed. Yield stress was found to increase with plate roughness whereas it decreased with the sweep time. The values of yield stress and moduli—G' and G"—increased during foam destabilization as a consequence of the changes in foam properties, especially the gas volume fraction, φ, and bubble size, R_32 (Sauter mean bubble radius). Thus, a relationship between τ_y, φ, R_32, and σ (surface tension) was established. The changes in the apparent viscosity, η, showed that the foams behaved like a shear thinning fluid beyond the yield point, fitting the modified Cross model with the relaxation time parameter (λ) also depending on the gas volume fraction. Overall, it was concluded that the viscoelastic behavior of the foam below the yield point and liquid-like behavior thereafter both vary during destabilization due to changes in the foam characteristics.
Resumo:
Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.
Resumo:
The Boltzmann equation in presence of boundary and initial conditions, which describes the general case of carrier transport in microelectronic devices is analysed in terms of Monte Carlo theory. The classical Ensemble Monte Carlo algorithm which has been devised by merely phenomenological considerations of the initial and boundary carrier contributions is now derived in a formal way. The approach allows to suggest a set of event-biasing algorithms for statistical enhancement as an alternative of the population control technique, which is virtually the only algorithm currently used in particle simulators. The scheme of the self-consistent coupling of Boltzmann and Poisson equation is considered for the case of weighted particles. It is shown that particles survive the successive iteration steps.
Resumo:
An unusually strong and prolonged stratospheric sudden warming (SSW) in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) data, the SLIMCAT Chemistry Transport Model (CTM), and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied) in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results primarily from biases in the diabatic descent in assimilated analyses.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach
Resumo:
We demonstrate that it is possible to link multi-chain molecular dynamics simulations with the tube model using a single chain slip-links model as a bridge. This hierarchical approach allows significant speed up of simulations, permitting us to span the time scales relevant for a comparison with the tube theory. Fitting the mean-square displacement of individual monomers in molecular dynamics simulations with the slip-spring model, we show that it is possible to predict the stress relaxation. Then, we analyze the stress relaxation from slip-spring simulations in the framework of the tube theory. In the absence of constraint release, we establish that the relaxation modulus can be decomposed as the sum of contributions from fast and longitudinal Rouse modes, and tube survival. Finally, we discuss some open questions regarding possible future directions that could be profitable in rendering the tube model quantitative, even for mildly entangled polymers
Resumo:
Ecological risk assessments must increasingly consider the effects of chemical mixtures on the environment as anthropogenic pollution continues to grow in complexity. Yet testing every possible mixture combination is impractical and unfeasible; thus, there is an urgent need for models that can accurately predict mixture toxicity from single-compound data. Currently, two models are frequently used to predict mixture toxicity from single-compound data: Concentration addition and independent action (IA). The accuracy of the predictions generated by these models is currently debated and needs to be resolved before their use in risk assessments can be fully justified. The present study addresses this issue by determining whether the IA model adequately described the toxicity of binary mixtures of five pesticides and other environmental contaminants (cadmium, chlorpyrifos, diuron, nickel, and prochloraz) each with dissimilar modes of action on the reproduction of the nematode Caenorhabditis elegans. In three out of 10 cases, the IA model failed to describe mixture toxicity adequately with significant or antagonism being observed. In a further three cases, there was an indication of synergy, antagonism, and effect-level-dependent deviations, respectively, but these were not statistically significant. The extent of the significant deviations that were found varied, but all were such that the predicted percentage effect seen on reproductive output would have been wrong by 18 to 35% (i.e., the effect concentration expected to cause a 50% effect led to an 85% effect). The presence of such a high number and variety of deviations has important implications for the use of existing mixture toxicity models for risk assessments, especially where all or part of the deviation is synergistic.
Resumo:
This study presents a numerical method to derive the Darcy- Weisbach friction coefficient for overland flow under partial inundation of surface roughness. To better account for the variable influence of roughness with varying levels of emergence, we model the flow over a network which evolves as the free surface rises. This network is constructed using a height numerical map, based on surface roughness data, and a discrete geometry skeletonization algorithm. By applying a hydraulic model to the flows through this network, local heads, velocities, and Froude and Reynolds numbers over the surface can be estimated. These quantities enable us to analyze the flow and ultimately to derive a bulk friction factor for flow over the entire surface which takes into account local variations in flow quantities. Results demonstrate that although the flow is laminar, head losses are chiefly inertial because of local flow disturbances. The results also emphasize that for conditions of partial inundation, flow resistance varies nonmonotonically but does generally increase with progressive roughness inundation.
Modeling of atmospheric effects on InSAR measurements by incorporating terrain elevation information
Resumo:
We propose an elevation-dependent calibratory method to correct for the water vapour-induced delays over Mt. Etna that affect the interferometric syntheric aperture radar (InSAR) results. Water vapour delay fields are modelled from individual zenith delay estimates on a network of continuous GPS receivers. These are interpolated using simple kriging with varying local means over two domains, above and below 2 km in altitude. Test results with data from a meteorological station and 14 continuous GPS stations over Mt. Etna show that a reduction of the mean phase delay field of about 27% is achieved after the model is applied to a 35-day interferogram. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Radar images and numerical simulations of three shallow convective precipitation events over the Coastal Range in western Oregon are presented. In one of these events, unusually well-defined quasi-stationary banded formations produced large precipitation enhancements in favored locations, while varying degrees of band organization and lighter precipitation accumulations occurred in the other two cases. The difference between the more banded and cellular cases appeared to depend on the vertical shear within the orographic cap cloud and the susceptibility of the flow to convection upstream of the mountain. Numerical simulations showed that the rainbands, which appeared to be shear-parallel convective roll circulations that formed within the unstable orographic cap cloud, developed even over smooth mountains. However, these banded structures were better organized, more stationary, and produced greater precipitation enhancement over mountains with small-scale topographic obstacles. Low-amplitude random topographic roughness elements were found to be just as effective as more prominent subrange-scale peaks at organizing and fixing the location of the orographic rainbands.
Resumo:
The integration of the central and east European countries (CEECs) into the Common Agricultural Policy (CAP) could become a major problem. At the Copenhagen European summit in December 2002, the EU agreed a transitional period with a gradual phasing in of direct payments. However, this strategy will not solve the problems of the CAP: budgetary limits remain problematic, the policy ignores possible developments in the World Trade Organization (WTO), and the extension of direct payments to the CEECs will further capitalize, and hence lock-in, agricultural support. The latter makes future reform even more difficult and, to overcome these problems, we suggest an alternative strategy to integrate the CEECs into the CAP. The EU should phase out direct payments by applying a bond scheme. Finally, we consider whether this option is politically viable.