25 resultados para Agricultural ecology (General)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.
Resumo:
A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the highest concentrations of metals and micro-organics were found in the urbanised, lower reaches of the Lee and in the Lee Navigation. Average annual concentrations of metals were generally within environmental quality standards although, oil many occasions, concentrations of cadmium, copper, lead, mercury and zinc were in excess of the standards. Various organic substances (used as herbicides, fungicides, insecticides, chlorination by-products and industrial solvents) were widely detected in the Lee system. Concentrations of ten micro-organic substances were observed in excess of their environmental quality standards, though not in terms of annual averages. Sewage treatment works were the principal point source input of nutrients. metals and micro-organic determinands to the catchment. Diffuse nitrogen sources contributed approximately 60% and 27% of the in-stream load in the upper and lower Lee respectively, whereas approximately 60% and 20% of the in-stream phosphorus load was derived from diffuse sources in the upper and lower Lee. For metals, the most significant source was the urban runoff from North London. In reaches less affected by effluent discharges, diffuse runoff from urban and agricultural areas dominated trends. Flig-h microbiological content, observed in the River Lee particularly in urbanised reaches, was far in excess of the EC Bathing Water Directive standards. Water quality issues and degraded habitat in the lower reaches of the Lee have led to impoverished aquatic fauna but, within the mid-catchment reaches and upper agricultural tributaries, less nutrient enrichment and channel alteration has permitted more diverse aquatic fauna.
Resumo:
Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.
Resumo:
Answering many of the critical questions in conservation, development and environmental management requires integrating the social and natural sciences. However, understanding the array of available quantitative methods and their associated terminology presents a major barrier to successful collaboration. We provide an overview of quantitative socio-economic methods that distils their complexity into a simple taxonomy. We outline how each has been used in conjunction with ecological models to address questions relating to the management of socio-ecological systems. We review the application of social and ecological quantitative concepts to agro-ecology and classify the approaches used to integrate the two disciplines. Our review included all published integrated models from 2003 to 2008 in 27 journals that publish agricultural modelling research. Although our focus is on agro-ecology, many of the results are broadly applicable to other fields involving an interaction between human activities and ecology. We found 36 papers that integrated social and ecological concepts in a quantitative model. Four different approaches to integration were used, depending on the scale at which human welfare was quantified. Most models viewed humans as pure profit maximizers, both when calculating welfare and predicting behaviour. Synthesis and applications. We reached two main conclusions based on our taxonomy and review. The first is that quantitative methods that extend predictions of behaviour and measurements of welfare beyond a simple market value basis are underutilized by integrated models. The second is that the accuracy of prediction for integrated models remains largely unquantified. Addressing both problems requires researchers to reach a common understanding of modelling goals and data requirements during the early stages of a project.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.
Resumo:
This paper assesses the impact of the 'decoupling' reform of the Common Agricultural Policy on the labour allocation decisions of Irish farmers. The agricultural household decision-making model provides the conceptual and theoretical framework to examine the interaction between government subsidies and farmers' time allocation decisions. The relationship postulated is that 'decoupling' of agricultural support from production would probably result in a decline in the return to farm labour but it would also lead to an increase in household wealth. The effect of these factors on how farmers allocate their time is tested empirically using labour participation and labour supply models. The models developed are sufficiently general for application elsewhere. The main findings for the Irish situation are that the decoupling of direct payments is likely to increase the probability of farmers participating in the off-farm employment market and that the amount of time allocated to off-farm work will increase.
Resumo:
The fate of biodiversity is intimately linked to agricultural development. Policy reform is an important driver of changes in agricultural land-use, but there is considerable spatial variation in response to policy and its potential impact on biodiversity. We review the links between policy, land-use and biodiversity and advocate a more integrated approach. Ecologists need to recognize that wildlife-friendly farming is not the only land-use strategy that can be used to conserve biodiversity and to research alternative options such as land sparing. There is also a need for social scientists and ecologists to bring their approaches together, so that land-use change and its consequences can be investigated in a more holistic way.
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
1. Reductions in resource availability, associated with land-use change and agricultural intensification in the UK and Europe, have been linked with the widespread decline of many farmland bird species over recent decades. However, the underlying ecological processes which link resource availability and population trends are poorly understood. 2. We construct a spatial depletion model to investigate the relationship between the population persistence of granivorous birds within the agricultural landscape and the temporal dynamics of stubble field availability, an important source of winter food for many of those species. 3. The model is capable of accurately predicting the distribution of a given number of finches and buntings amongst patches of different stubble types in an agricultural landscape over the course of a winter and assessing the relative value of different landscapes in terms of resource availability. 4. Sensitivity analyses showed that the model is relatively robust to estimates of energetic requirements, search efficiency and handling time but that daily seed survival estimates have a strong influence on model fit. Understanding resource dynamics in agricultural landscapes is highlighted as a key area for further research. 5. There was a positive relationship between the predicted number of bird days supported by a landscape over-winter and the breeding population trend for yellowhammer Emberiza citrinella, a species for which survival has been identified as the primary driver of population dynamics, but not for linnet Carduelis cannabina, a species for which productivity has been identified as the primary driver of population dynamics. 6. Synthesis and applications. We believe this model can be used to guide the effective delivery of over-winter food resources under agri-environment schemes and to assess the impacts on granivorous birds of changing resource availability associated with novel changes in land use. This could be very important in the future as farming adapts to an increasingly dynamic trading environment, in which demands for increased agricultural production must be reconciled with objectives for environmental protection, including biodiversity conservation.
Resumo:
Three potential explanations of past reforms of the Common Agricultural Policy (CAP) can be identified in the literature: a budget constraint, pressure from General Agreement on Tariffs and Trade/World Trade Organization (GATT/WTO) negotiations or commitments and a paradigm shift emphasising agriculture’s provision of public goods. This discussion on the driving forces of CAP reform links to broader theoretical questions on the role of budgetary politics, globalisation of public policy and paradigm shift in explaining policy change. In this article, the Health Check reforms of 2007/2008 are assessed. They were probably more ambitious than first supposed, although it was a watered-down package agreed by ministers in November 2008. We conclude that the Health Check was not primarily driven by budget concerns or by the supposed switch from the state-assisted to the multifunctional policy paradigm. The European Commission’s wish to adopt an offensive negotiating stance in the closing phases of the Doha Round was a more likely explanatory factor. The shape and purpose of the CAP post-2013 is contested with divergent views among the Member States.
Resumo:
To inspire new ideas in research on pollination ecology, we list the most important unanswered questions in the field. This list was drawn up by contacting 170 scientists from different areas of pollination ecology and asking them to contribute their opinion on the greatest knowledge gaps that need to be addressed. Almost 40% of them took part in our email poll and we received more than 650 questions and comments, which we classified into different categories representing various aspects of pollination research. The original questions were merged and synthesised, and a final vote and ranking led to the resultant list. The categories cover plant sexual reproduction, pollen and stigma biology, abiotic pollination, evolution of animal-mediated pollination, interactions of pollinators and floral antagonists, pollinator behaviour, taxonomy, plant-pollinator assemblages, geographical trends in diversity, drivers of pollinator loss, ecosystem services, management of pollination, and conservation issues such as the implementation of pollinator conservation. We focused on questions that were of a broad scope rather than case-specific; thus, addressing some questions may not be feasible within single research projects but constitute a general guide for future directions. With this compilation we hope to raise awareness of pollination-related topics not only among researchers but also among non-specialists including policy makers, funding agencies and the public at large.
Resumo:
The wood mouse is a common and abundant species in agricultural landscape and is a focal species in pesticide risk assessment. Empirical studies on the ecology of the wood mouse have provided sufficient information for the species to be modelled mechanistically. An individual-based model was constructed to explicitly represent the locations and movement patterns of individual mice. This together with the schedule of pesticide application allows prediction of the risk to the population from pesticide exposure. The model included life-history traits of wood mice as well as typical landscape dynamics in agricultural farmland in the UK. The model obtains a good fit to the available population data and is fit for risk assessment purposes. It can help identify spatio-temporal situations with the largest potential risk of exposure and enables extrapolation from individual-level endpoints to population-level effects. Largest risk of exposure to pesticides was found when good crop growth in the “sink” fields coincided with high “source” population densities in the hedgerows. Keywords: Population dynamics, Pesticides, Ecological risk assessment, Habitat choice, Agent-based model, NetLogo