23 resultados para Agglomeration principle
em CentAUR: Central Archive University of Reading - UK
Resumo:
Has international law ever, and, if it has not, can it ever, truly freed itself from the strictures of neocolonialism and the drive by a privileged elite to dominate the world scene? This article begins by inquiring into the nature of neocolonialism and, in so doing, pays particular attention to the writings of former Ghanaian President Kwame Nkrumah. It then proceeds to determine how neocolonialist designs surface in international law today by briefly looking at two aspects of international law in particular, namely customary international law, with specific reference to the counterterrorism context, and the principle of self-defence. In the final analysis, this article argues for a necessary and eternal scepticism of international law and the agendas of its privileged gatekeepers. Like classic State power, it opens itself to, and often operates as, neocolonial overreach, and to quote Nkrumah, “[t]he cajolement, the wheedlings, the seductions and the Trojan horses of neo-colonialism must be stoutly resisted, for neo-colonialism is a latter-day harpy, a monster which entices its victims with sweet music.”
Resumo:
Pollen-mediated gene flow is one of the main concerns associated with the introduction of genetically modified (GM) crops. Should a premium for non-GM varieties emerge on the market, ‘contamination’ by GM pollen would generate a revenue loss for growers of non-GM varieties. This paper analyses the problem of pollen-mediated gene flow as a particular type of production externality. The model, although simple, provides useful insights into coexistence policies. Following on from this and taking GM herbicide-tolerant oilseed rape (Brassica napus) as a model crop, a Monte Carlo simulation is used to generate data and then estimate the effect of several important policy variables (including width of buffer zones and spatial aggregation) on the magnitude of the externality associated with pollen-mediated gene flow.