45 resultados para Ag addition

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

WO3-based materials as sensors for the monitor of environmental gases such as NO2 (NO + NO2) have been rapidly developed for various potential applications (stationary and mobile uses). It has been reported that these materials are highly sensitive to NOx with the sensitivity further enhanced by adding precious group metals (PGM such as Pt, Pd, Au, etc.). However, there has been limited work in revealing the sensing mechanism for these gases over the WO3-based sensors. In particular, the role of promoter is not yet clear though speculations on their catalytic, electronic and structural effects have been made in the past. In parallel to these PGM promoters here we report,for the first time, that Ag promotion can also enhance WO3 sensitivity significantly. In addition, this promotion decreases the optimum sensor temperature of 300 degreesC for Most WO3-based sensors, to below 200 degreesC. Characterizations (XRD, TEM, and impedance measurement) reveal that there is no significant bulk structure change nor particle size alteration in the WO3 phases during the NO exposure. However, it is found that the Ag doping creates a high concentration of oxygen vacancies in form of coordinated crystallographic shear (CS) planes onto the underneath WO3. It is thus proposed that the Ag particle facilitates the oxidative conversion of NO to NO2 followed by a subsequent NO2 adsorption on the defective WO, sites created at the Ag-WO3 interface; hence, accounting for the high molecular sensitivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly stereoselective synthesis of conformationally constrained cyclic γ-amino acids has been devised. The key step involves an intramolecular cyclization of a nitronate onto a conjugated ester, promoted by a bifunctional thiourea catalyst. This methodology has been successfully applied to generate a variety of γ-amino acids, including some containing three contiguous stereocenters, with very high diastereoselectivity and excellent enantioselectivity. It is postulated that an interaction that is key to the success of the process is the simultaneous coordination of the thiourea functionality to both the conjugated ester and the nitronate. Finally, the synthetic utility of these compounds is demonstrated in the synthesis of two dipeptides derived from the C- and N-termini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of experiments was completed to investigate the impact of addition of enzymes at ensiling on in vitro rumen degradation of maize silage. Two commercial products, Depot 40 (D, Biocatalysts Ltd., Pontypridd, UK) and Liquicell 2500 (L, Specialty Enzymes and Biochemicals, Fresno, CA, USA), were used. In experiment 1, the pH optima over a pH range 4.0-6.8 and the stability of D and L under changing pH (4.0, 5.6, 6.8) and temperature (15 and 39 degreesC) conditions were determined. In experiment 2, D and L were applied at three levels to whole crop maize at ensiling, using triplicate 0.5 kg capacity laboratory minisilos. A completely randomized design with a factorial arrangement of treatments was used. One set of treatments was stored at room temperature, whereas another set was stored at 40 degreesC during the first 3 weeks of fermentation, and then stored at room temperature. Silages were opened after 120 days. Results from experiment I indicated that the xylanase activity of both products showed an optimal pH of about 5.6, but the response differed according to the enzyme, whereas the endoglucanase activity was inversely related to pH. Both products retained at least 70% of their xylanase activity after 48 h incubation at 15 or 39 degreesC. In experiment 2, enzymes reduced (P < 0.05) silage pH, regardless of storage temperature and enzyme level. Depol 40 reduced (P < 0.05) the starch contents of the silages, due to its high alpha-amylase activity. This effect was more noticeable in the silages stored at room temperature. Addition of L reduced (P < 0.05) neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents. In vitro rumen degradation, assessed using the Reading Pressure Technique (RPT), showed that L increased (P < 0.05) the initial 6 h gas production (GP) and organic matter degradability (OMD), but did not affect (P > 0.05) the final extent of OMD, indicating that this preparation acted on the rumen degradable material. In contrast, silages treated with D had reduced (P < 0.05) rates of gas production and OMD. These enzymes, regardless of ensiling temperature, can be effective in improving the nutritive quality of maize silage when applied at ensiling. However, the biochemical properties of enzymes (i.e., enzymic activities, optimum pH) may have a crucial role in dictating the nature of the responses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Recent changes in European agricultural policy have led to measures to reverse the loss of species-rich grasslands through the creation of new areas on ex-arable land. Ex-arable soils are often characterized by high inorganic nitrogen (N) levels, which lead to the rapid establishment of annual and fast-growing perennial species during the initial phase of habitat creation. The addition of carbon (C) to the soil has been suggested as a countermeasure to reduce plant-available N and alter competitive interactions among plant species. 2. To test the effect of C addition on habitat creation on ex-arable land, an experiment was set up on two recently abandoned fields in Switzerland and on two 6-year-old restoration sites in the UK. Carbon was added as a mixture of either sugar and sawdust or wood chips and sawdust during a period of 2 years. The effects of C addition on soil parameters and vegetation composition were assessed during the period of C additions and 1 year thereafter. 3. Soil nitrate concentrations were reduced at all sites within weeks of the first C addition, and remained low until cessation of the C additions. The overall effect of C addition on vegetation was a reduction in above-ground biomass and cover. At the Swiss sites, the addition of sugar and sawdust led to a relative increase in legume and forb cover and to a decrease in grass cover. The soil N availability, composition of soil micro-organisms and vegetation characteristics continued to be affected after cessation of C additions. 4. Synthesis and applications. The results suggest that C addition in grassland restoration is a useful management method to reduce N availability on ex-arable land. Carbon addition alters the vegetation composition by creating gaps in the vegetation that facilitates the establishment of late-seral plant species, and is most effective when started immediately after the abandonment of arable fields and applied over several years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time PCR protocols were developed to detect and discriminate 11 anastomosis groups (AGs) of Rhizoctonia solani using ribosomal internal transcribed spacer (ITS) regions (AG-1-IA, AG-1-IC, AG-2-1, AG-2-2, AG-4HGI+II, AG-4HGIII, AG-8) or beta-tubulin (AG-3, AG-4HGII, AG-5 and AG-9) sequences. All real-time assays were target group specific, except AG-2-2, which showed a weak cross-reaction with AG-2tabac. In addition, methods were developed for the high throughput extraction of DNA from soil and compost samples. The DNA extraction method was used with the AG-2-1 assay and shown to be quantitative with a detection threshold of 10-7 g of R. solani per g of soil. A similar DNA extraction efficiency was observed for samples from three contrasting soil types. The developed methods were then used to investigate the spatial distribution of R. solani AG-2-1 in field soils. Soil from shallow depths of a field planted with Brassica oleracea tested positive for R. solani AG-2-1 more frequently than soil collected from greater depths. Quantification of R. solani inoculum in field samples proved challenging due to low levels of inoculum in naturally occurring soils. The potential uses of real-time PCR and DNA extraction protocols to investigate the epidemiology of R. solani are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethylgermacyclopentene-3, have been carried out to obtain rate constants for its bimolecular reaction with acetylene, C2H2. The reaction was studied in the gas-phase over the pressure range 1-100 Tort, with SF6 as bath gas, at 5 temperatures in the range 297-553 K. The reaction showed a very slight pressure dependence at higher temperatures. The high pressure rate constants (obtained by extrapolation at the three higher temperatures) gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) (-10.94 +/- 0.05) + (6.10 +/- 0.36 kJ mol(-1))/RTln10. These Arrhenius parameters are consistent with a fast reaction occurring at approximately 30% of the collision rate at 298 K. Quantum chemical calculations (both DFT and ab initio G2//B3LYP and G2//QCISD) of the GeC2H4 potential energy surface (PES), show that GeH2 + C2H2 react initially to form germirene which can isomerise to vinylgermylene with a relatively low barrier. RRKM modelling, based on a loose association transition state, but assuming vinylgermylene is the end product (used in combination with a weak collisional deactivation model) predicts a strong pressure dependence using the calculated energies, in conflict with the experimental evidence. The detailed GeC2H4 PES shows considerable complexity with ten other accessible stable minima (B3LYP level), the three most stable of which are all germylenes. Routes through this complex surface were examined in detail. The only product combination which appears capable of satisfying the (P-3) + C2H4.C2H4 was confirmed as a product by GC observed lack of a strong pressure dependence is Ge(P-3) + C2H4. C2H4 was confirmed as a product by GC analysis. Although the formation of these products are shown to be possible by singlet-triplet curve crossing during dissociation of 1-germiranylidene (1-germacyclopropylidene), it seems more likely (on thermochernical grounds) that the triplet biradical, (GeCH2CH2.)-Ge-., is the immediate product precursor. Comparisons are made with the reaction of SiH2 with C2H2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of a nanofiber that is formed from a self-assembling pseudopeptide has been decorated by gold and silver nanoparticles that are stabilized by a dipeptide. Transmission electron microscopic images make the decoration visible. In this paper, a new strategy of mineralizing a pseudopeptide based nanofiber by gold and silver nanoparticles with use of a two-component nanografting method is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.